Resonances for steplike potentials: Forward and inverse results

被引:21
作者
Christiansen, T [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
steplike potentials; Schrodinger operator; resonances; inverse problem;
D O I
10.1090/S0002-9947-05-03716-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider resonances associated to the one dimensional Schrodinger operator - (d2)/(dx2) + V ( x), where V ( x) = V+ if x > x(M) and V ( x) = V- if x < -x(M), with V+ not equal V-. We obtain asymptotics of the resonance-counting function for several regions. Moreover, we show that in several situations, the resonances, V+, and V- determine V uniquely up to translation.
引用
收藏
页码:2071 / 2089
页数:19
相关论文
共 23 条
[1]   On the inverse resonance problem [J].
Brown, BM ;
Knowles, I ;
Weikard, R .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2003, 68 :383-401
[2]   Asymptotics for a resonance-counting function for potential scattering on cylinders [J].
Christiansen, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (01) :172-190
[3]   Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends [J].
Christiansen, T .
ANNALES HENRI POINCARE, 2002, 3 (05) :895-920
[4]   SCATTERING AND INVERSE SCATTERING FOR STEPLIKE POTENTIALS IN THE SCHRODINGER-EQUATION [J].
COHEN, A ;
KAPPELER, T .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1985, 34 (01) :127-180
[5]   Asymptotic distribution of resonances in one dimension [J].
Froese, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (02) :251-272
[6]   Upper bounds for the resonance counting function of Schrodinger operators in odd dimensions [J].
Froese, R .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03) :538-546
[7]  
GUILLOPE L, 1989, ANN SCI ECOLE NORM S, V22, P137
[8]  
Korotyaev E, 2004, ASYMPTOTIC ANAL, V37, P215
[9]  
KOROTYAEV E, INVERSE RESONANCE SC
[10]  
Levin B. Ja., 1964, DISTRIBUTION ZEROS E