Integrable Nonlocal Nonlinear Schrodinger Equation

被引:699
|
作者
Ablowitz, Mark J. [1 ]
Musslimani, Ziad H. [2 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
INVERSE SCATTERING TRANSFORM;
D O I
10.1103/PhysRevLett.110.064105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new integrable nonlocal nonlinear Schrodinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contrasted with the classical nonlinear Schrodinger equation. DOI: 10.1103/PhysRevLett.110.064105
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation
    Fokas, A. S.
    NONLINEARITY, 2016, 29 (02) : 319 - 324
  • [2] Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    NONLINEARITY, 2016, 29 (03) : 915 - 946
  • [3] Long-time asymptotics for the integrable nonlocal nonlinear Schrodinger equation
    Rybalko, Yan
    Shepelsky, Dmitry
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [4] Solitons and dynamics for a general integrable nonlocal coupled nonlinear Schrodinger equation
    Song, Cai-Qin
    Xiao, Dong-Mei
    Zhu, Zuo-Nong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 45 : 13 - 28
  • [5] A general integrable three-component coupled nonlocal nonlinear Schrodinger equation
    Zhang, Yan
    Liu, Yinping
    Tang, Xiaoyan
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2729 - 2738
  • [6] Integrable nonlocal derivative nonlinear Schrodinger equations
    Ablowitz, Mark J.
    Luo, Xu-Dan
    Musslimani, Ziad H.
    Zhu, Yi
    INVERSE PROBLEMS, 2022, 38 (06)
  • [7] Curved wedges in the long-time asymptotics for the integrable nonlocal nonlinear Schrodinger equation
    Rybalko, Yan
    Shepelsky, Dmitry
    STUDIES IN APPLIED MATHEMATICS, 2021, 147 (03) : 872 - 903
  • [8] Collapse in the nonlocal nonlinear Schrodinger equation
    Maucher, F.
    Skupin, S.
    Krolikowski, W.
    NONLINEARITY, 2011, 24 (07) : 1987 - 2001
  • [9] Novel Particular Solutions, Breathers, and Rogue Waves for an Integrable Nonlocal Derivative Nonlinear Schrodinger Equation
    Shen, Yali
    Yao, Ruoxia
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [10] On a novel integrable generalization of the nonlinear Schrodinger equation
    Lenells, J.
    Fokas, A. S.
    NONLINEARITY, 2009, 22 (01) : 11 - 27