Fluorescence blinking of single major light-harvesting complexes

被引:15
|
作者
Chmeliov, Jevgenij [1 ,2 ]
Valkunas, Leonas [1 ,2 ]
Krueger, Tjaart P. J. [3 ]
Ilioaia, Cristian [3 ,4 ]
van Grondelle, Rienk [3 ]
机构
[1] Ctr Phys Sci & Technol, Inst Phys, LT-01108 Vilnius, Lithuania
[2] Vilnius Univ, Fac Phys, Dept Theoret Phys, LT-10222 Vilnius, Lithuania
[3] Vrije Univ Amsterdam, Fac Sci, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
[4] Univ Paris 11, CEA Saclay, Inst Biol & Technol Saclay, CEA,UMR CNRS 8221, F-91191 Gif Sur Yvette, France
来源
NEW JOURNAL OF PHYSICS | 2013年 / 15卷
基金
欧洲研究理事会;
关键词
BACTERIAL REACTION CENTERS; SELF-REGULATION PHENOMENA; PHOTOSYSTEM-II; ENERGY-DISSIPATION; QUANTUM JUMPS; INTERMITTENCY; SPECTROSCOPY; DYNAMICS; PROTEIN; MECHANISMS;
D O I
10.1088/1367-2630/15/8/085007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent time-resolved studies have revealed the switching behavior of single photosynthetic light-harvesting complexes. In this work, we suggest a conceptual diffusion-controlled model, which is able to describe essential protein dynamics underlying this switching phenomenon. The calculated blinking statistics is compared with the experimental results measured under various experimental conditions and not only reproduces the power-law behavior at intermediate times, but also follows the experimentally observed deviations from such behavior on a shorter timescale. We find that even under ordinary light-harvesting conditions, some antenna complexes are quenched and their fraction noticeably increases in a more acid environment. As a result, the lability of the protein scaffold allows the coexistence of light-harvesting and excitation-quenching states and therefore gives rise to regulatory switching known as non-photochemical quenching.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Photoprotection capacity of microalgae improved by regulating the antenna size of light-harvesting complexes
    Hu, Guang-Rong
    Fan, Yong
    Zheng, Yan-Lin
    Xu, Feng
    Zhang, Lei
    Li, Fu-Li
    JOURNAL OF APPLIED PHYCOLOGY, 2020, 32 (02) : 1027 - 1039
  • [42] Coherent Vibronic Coupling in Light-Harvesting Complexes from Photosynthetic Marine Algae
    Richards, G. H.
    Wilk, K. E.
    Curmi, P. M. G.
    Quiney, H. M.
    Davis, J. A.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (02): : 272 - 277
  • [43] Photosynthetic Light-Harvesting (Antenna) Complexes-Structures and Functions
    Lokstein, Heiko
    Renger, Gernot
    Goetze, Jan P.
    MOLECULES, 2021, 26 (11):
  • [44] Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes
    Opacic, Milena
    Durand, Gregory
    Bosco, Michael
    Polidori, Ange
    Popot, Jean-Luc
    JOURNAL OF MEMBRANE BIOLOGY, 2014, 247 (9-10) : 1031 - 1041
  • [45] In Vitro Reconstitution of Light-harvesting Complexes of Plants and Green Algae
    Natali, Alberto
    Roy, Laura M.
    Croce, Roberta
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (92):
  • [46] Efficient estimation of energy transfer efficiency in light-harvesting complexes
    Shabani, A.
    Mohseni, M.
    Rabitz, H.
    Lloyd, S.
    PHYSICAL REVIEW E, 2012, 86 (01)
  • [47] Component spectroscopic properties of light-harvesting complexes with DFT calculations
    Badu, Shyam
    Prabhakar, Sanjay
    Melnik, Roderick
    BIOCELL, 2020, 44 (03) : 279 - 291
  • [48] Origin of Long-Lived Coherences in Light-Harvesting Complexes
    Christensson, Niklas
    Kauffmann, Harald F.
    Pullerits, Tonu
    Mancal, Tomas
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (25) : 7449 - 7454
  • [49] Excitonic energy transfer in light-harvesting complexes in purple bacteria
    Ye, Jun
    Sun, Kewei
    Zhao, Yang
    Yu, Yunjin
    Lee, Chee Kong
    Cao, Jianshu
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (24)
  • [50] Exciton Band Structure in Bacterial Peripheral Light-Harvesting Complexes
    Trinkunas, Gediminas
    Zerlauskiene, Oksana
    Urboniene, Vidita
    Chmeliov, Jevgenij
    Gall, Andrew
    Robert, Bruno
    Valkunas, Leonas
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (17) : 5192 - 5198