Existence of non-trivial limit cycles in Abel equations with symmetries

被引:16
作者
Alvarez, M. J. [1 ]
Bravo, J. L. [2 ]
Fernandez, M. [2 ]
机构
[1] Univ Illes Balears, Dept Matemat & Informat, Palma De Mallorca 07122, Spain
[2] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
Periodic solutions; Abel equation; Abelian integrals; Limit cycles; DIFFERENTIAL-EQUATIONS; UNIQUENESS; NUMBER;
D O I
10.1016/j.na.2013.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the periodic solutions of the generalized Abel equation x' = a(1)A(1)(t)x(n1) + a(2)A(2)(t)x(n2) + a(3)A(3)(t)x(n3), where n(1), n(2), n(3) > 1 are distinct integers, a(1), a(2), a(3) is an element of R, and A(1), A(2), A(3) are 2 pi-periodic analytic functions such that A(1)(t) sin t, A(2)(t) cos t, A(3)(t) sin t cos t are pi-periodic positive even functions. When (n(3) - n(1))(n(3) - n(2)) < 0 we prove that the equation has no non-trivial (different from zero) limit cycle for any value of the parameters a(1), a(2), a(3). When (n(3) - n(1))(n(3) - n(2)) > 0 we obtain under additional conditions the existence of non-trivial limit cycles. In particular, we obtain limit cycles not detected by Abelian integrals. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 18 条
[1]   THE NUMBER OF LIMIT CYCLES FOR GENERALIZED ABEL EQUATIONS WITH PERIODIC COEFFICIENTS OF DEFINITE SIGN [J].
Alvarez, Amelia ;
Bravo, Jose-Luis ;
Fernandez, Manuel .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) :1493-1501
[2]   A new uniqueness criterion for the number of periodic orbits of Abel equations [J].
Alvarez, M. J. ;
Gasull, A. ;
Giacomini, H. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :161-176
[3]   Abel-like differential equations with a unique limit cycle [J].
Alvarez, M. J. ;
Bravo, J. L. ;
Fernandez, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) :3694-3702
[4]   Uniqueness of limit cycles for polynomial first-order differential equations [J].
Alvarez, M. J. ;
Bravo, J. L. ;
Fernandez, M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 360 (01) :168-189
[5]   Abel-like differential equations with no periodic solutions [J].
Bravo, J. L. ;
Torregrosa, J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :931-942
[6]   LIMIT CYCLES OF NON-AUTONOMOUS SCALAR ODES WITH TWO SUMMANDS [J].
Bravo, Jose-Luis ;
Fernandez, Manuel .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (02) :1091-1102
[7]  
Calanchi M., 2002, Adv. Differential Equations, V7, P197
[8]  
Cherkas L. A., 1975, DIFF URAVN, V12, P944
[9]   Cubic systems and Abel equations [J].
Devlin, J ;
Lloyd, NG ;
Pearson, JM .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) :435-454
[10]   LIMIT-CYCLES FOR A CLASS OF ABEL EQUATIONS [J].
GASULL, A ;
LLIBRE, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (05) :1235-1244