Eikonal equations on ramified spaces

被引:9
作者
Camilli, Fabio [1 ]
Schieborn, Dirk
Marchi, Claudio [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
[2] Univ Padua, Dip Matemat, I-35121 Padua, Italy
关键词
Hamilton-Jacobi equation; ramified space; viscosity solution; comparison principle; HAMILTON-JACOBI EQUATIONS;
D O I
10.4171/IFB/297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the results in [23] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providing existence and uniqueness results.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 25 条
  • [1] Achdou Y., NODEA NONL IN PRESS
  • [2] ALVAREZ O., 2010, MEM AM MATH SOC, V204
  • [3] Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds
    Azagra, D
    Ferrera, J
    López-Mesas, F
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) : 304 - 361
  • [4] Bardi M., 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, with Appendices by Falcone M and Soravia P, DOI DOI 10.1007/978-0-8176-4755-1
  • [5] Barles G., PREPRINT
  • [6] Bressan A, 2007, NETW HETEROG MEDIA, V2, P313
  • [7] Camilli F., 2011, ARXIV11055725
  • [8] Cannarsa P, 2004, J EUR MATH SOC, V6, P435
  • [9] Homogenization and Enhancement for the G-Equation
    Cardaliaguet, P.
    Nolen, J.
    Souganidis, P. E.
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) : 527 - 561
  • [10] Existence of C1 critical subsolutions of the Hamilton-Jacobi equation
    Fathi, A
    Siconolfi, A
    [J]. INVENTIONES MATHEMATICAE, 2004, 155 (02) : 363 - 388