Eikonal equations on ramified spaces

被引:9
作者
Camilli, Fabio [1 ]
Schieborn, Dirk
Marchi, Claudio [2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, I-00161 Rome, Italy
[2] Univ Padua, Dip Matemat, I-35121 Padua, Italy
关键词
Hamilton-Jacobi equation; ramified space; viscosity solution; comparison principle; HAMILTON-JACOBI EQUATIONS;
D O I
10.4171/IFB/297
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the results in [23] to higher dimensional ramified spaces. For this purpose we introduce ramified manifolds and, as special cases, locally elementary polygonal ramified spaces (LEP spaces). On LEP spaces we develop a theory of viscosity solutions for Hamilton-Jacobi equations, providing existence and uniqueness results.
引用
收藏
页码:121 / 140
页数:20
相关论文
共 25 条
[1]  
Achdou Y., NODEA NONL IN PRESS
[2]  
ALVAREZ O., 2010, MEM AM MATH SOC, V204
[3]   Nonsmooth analysis and Hamilton-Jacobi equations on Riemannian manifolds [J].
Azagra, D ;
Ferrera, J ;
López-Mesas, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 220 (02) :304-361
[4]  
Bardi M., 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, with Appendices by Falcone M and Soravia P, DOI DOI 10.1007/978-0-8176-4755-1
[5]  
Barles G., PREPRINT
[6]  
Bressan A, 2007, NETW HETEROG MEDIA, V2, P313
[7]  
Camilli F., 2011, ARXIV11055725
[8]  
Cannarsa P, 2004, J EUR MATH SOC, V6, P435
[9]   Homogenization and Enhancement for the G-Equation [J].
Cardaliaguet, P. ;
Nolen, J. ;
Souganidis, P. E. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) :527-561
[10]   Existence of C1 critical subsolutions of the Hamilton-Jacobi equation [J].
Fathi, A ;
Siconolfi, A .
INVENTIONES MATHEMATICAE, 2004, 155 (02) :363-388