A Fourth Order Parabolic Problem with a Nonlinear Diffusion

被引:0
|
作者
Liang, Bo [1 ]
Gao, Jinghua [1 ]
Wang, Liyuan [1 ]
Zhu, Yingjie [2 ]
机构
[1] Dalian Jiaotong Univ, Sch Sci, Dalian 116028, Peoples R China
[2] Changchun Univ, Coll Sci, Changchun 13022, Peoples R China
关键词
thin film; fourth order; diffusion; THIN VISCOUS FILMS; LUBRICATION APPROXIMATION; EQUATION;
D O I
10.1016/j.phpro.2012.05.028
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The paper investigates a thin film equation with a second-order diffusion term: u(t) + (u(n)u(xxx))(x) - (u(m)u(x))(x) = 0 which has many important applications in biomedicine, biology and physics. For m > n - 1, the solution also converges to its mean at an exponential rate as the time. (C) 2012 Published by Elsevier B. V. Selection and/or peer review under responsibility of ICMPBE International Committee.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [21] Classification of Singular Solutions in a Nonlinear Fourth-Order Parabolic Equation
    Bingchen Liu
    Min Zhang
    Journal of Dynamical and Control Systems, 2023, 29 : 455 - 474
  • [22] Positive entropic schemes for a nonlinear fourth-order parabolic equation
    Carrillo, JA
    Jüngel, A
    Tang, SQ
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2003, 3 (01): : 1 - 20
  • [23] Finite element approximation of a fourth order nonlinear degenerate parabolic equation
    Barrett, JW
    Blowey, JF
    Garcke, H
    NUMERISCHE MATHEMATIK, 1998, 80 (04) : 525 - 556
  • [24] Finite element approximation of a fourth order nonlinear degenerate parabolic equation
    John W. Barrett
    James F. Blowey
    Harald Garcke
    Numerische Mathematik, 1998, 80 : 525 - 556
  • [25] Asymptotic behavior of a nonlinear fourth order eigenvalue problem
    Wei, JC
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (9-10) : 1451 - 1467
  • [26] Numerical Solution of a Fully Fourth Order Nonlinear Problem
    Dang Quang, A.
    Ngo Thi Kim Quy
    ADVANCES IN INFORMATION AND COMMUNICATION TECHNOLOGY, 2017, 538 : 413 - 420
  • [27] On a boundary value problem for a parabolic-hyperbolic equation of the fourth order
    Mamajonov, M.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 2025, 117 (01): : 118 - 132
  • [29] An Improved Fourth Order Nonlinear Diffusion Method For Image Denoising
    Lu, Bibo
    Lin, Zhonghua
    Liu, Qiang
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 6287 - 6290
  • [30] Numerical methods for fourth order nonlinear degenerate diffusion problems
    Becker J.
    Grun G.
    Lenz M.
    Rumpf M.
    Applications of Mathematics, 2002, 47 (6) : 517 - 543