Durability of platinum-based fuel cell electrocatalysts: Dissolution of bulk and nanoscale platinum

被引:285
作者
Cherevko, Serhiy [1 ,2 ]
Kulyk, Nadiia [1 ]
Mayrhofer, Karl J. J. [1 ,2 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, Dept Interface Chem & Surface Engn, Max Planck Str 1, Dusseldorf, Germany
[2] Forschungszentrum Julich, Helmholtz Inst Erlangen Nurnberg Renewable Energy, Egerlandstr 3, D-91058 Erlangen, Germany
关键词
Fuel cell; Electrocatalysis; Nanoparticles; Degradation; FLOW DOUBLE-ELECTRODE; X-RAY-SCATTERING; OXYGEN-REDUCTION ELECTROCATALYSTS; OXIDE-FILM FORMATION; IN-SITU; CATALYST DEGRADATION; CATHODE CATALYST; SULFURIC-ACID; NOBLE-METALS; ELECTROCHEMICAL DISSOLUTION;
D O I
10.1016/j.nanoen.2016.03.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Platinum- and platinum-alloy-based electrocatalysts are the key component of the state-of-the-art proton exchange membrane fuel cells. Dispersed in the form of nanometer size particles on a high surface-area carbon support and subjected to highly corrosive environment, they can degrade and lead to fuel cell performance deterioration with time. This review is a survey of recent literature of platinum dissolution - a constituent part of the complex degradation mechanism of fuel cell electrocatalyst. The focus is set on two types of surfaces: extended and nanoparticulate. Results obtained on extended surfaces of model bulk electrodes provide fundamental insights into mechanisms of equilibrium and non equilibrium platinum dissolution. This knowledge can be used for the comprehension of platinum dissolution from nanostructured electrodes, both in half-cell aqueous electrolyte and fuel cell environment. Detailed analysis realized in the current work shows that model systems suit well the trends in dissolution of real catalysts. Moreover, dissolution behavior in real fuel cells is portrayed well by half-cell dissolution tests. Peculiarities in dissolution of nanoparticles, especially in the real fuel cell environment are discussed. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:275 / 298
页数:24
相关论文
共 208 条
[1]   Dynamics of Particle Growth and Electrochemical Surface Area Loss due to Platinum Dissolution [J].
Ahluwalia, Rajesh K. ;
Arisetty, Srikanth ;
Peng, Jui-Kun ;
Subbaraman, Ram ;
Wang, Xiaoping ;
Kariuki, Nancy ;
Myers, Deborah J. ;
Mukundan, Rangachary ;
Borup, Rodney ;
Polevaya, Olga .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :F291-F304
[2]   Thermodynamics and Kinetics of Platinum Dissolution from Carbon-Supported Electrocatalysts in Aqueous Media under Potentiostatic and Potentiodynamic Conditions [J].
Ahluwalia, Rajesh K. ;
Arisetty, Srikanth ;
Wang, Xiaoping ;
Wang, Xiaohua ;
Subbaraman, Ram ;
Ball, Sarah C. ;
DeCrane, Stacy ;
Myers, Deborah J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :F447-F455
[3]   Platinum catalyst degradation in phosphoric acid fuel cells for stationary applications [J].
Aindow, T. T. ;
Haug, A. T. ;
Jayne, D. .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4506-4514
[4]   Comprehensive study of the growth of thin oxide layers on Pt electrodes under well-defined temperature, potential, and time conditions [J].
Alsabet, M ;
Grden, M ;
Jerkiewicz, G .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 589 (01) :120-127
[5]   REAL CONDITION OF ELECTROCHEMICALLY OXIDIZED PLATINUM SURFACES .1. RESOLUTION OF COMPONENT PROCESSES [J].
ANGERSTE.H ;
CONWAY, BE ;
SHARP, WBA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1973, 43 (01) :9-36
[6]  
ANGERSTEINKOZLOWSKA H, 1979, J ELECTROANAL CHEM, V100, P417, DOI 10.1016/0368-1874(79)85127-8
[7]   The stability of Pt-M (M = first row transition metal) alloy catalysts and its effect on the activity in low temperature fuel cells - A literature review and tests on a Pt-Co catalyst [J].
Antolini, Ermete ;
Salgado, Jose R. C. ;
Gonzalez, Ernesto R. .
JOURNAL OF POWER SOURCES, 2006, 160 (02) :957-968
[8]   The problem of Ru dissolution from Pt-Ru catalysts during fuel cell operation: analysis and solutions [J].
Antolini, Ermete .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2011, 15 (03) :455-472
[9]   Effect of operational potential on performance decay rate in a phosphoric acid fuel cell [J].
Aragane, J ;
Urushibata, H ;
Murahashi, T .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1996, 26 (02) :147-152
[10]   CHANGE OF PT DISTRIBUTION IN THE ACTIVE COMPONENTS OF PHOSPHORIC-ACID FUEL-CELL [J].
ARAGANE, J ;
MURAHASHI, T ;
ODAKA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (04) :844-850