ON THE GEOMETRY OF STAR-SHAPED CURVES IN Rn

被引:0
|
作者
Horocholyn, Stefan A. [1 ]
机构
[1] Tokyo Metropolitan Univ, Dept Math Sci, 1-1 Minami Osawa, Hachioji, Tokyo 1920397, Japan
关键词
eformations of centro-affine curves; integrable systems; n-KdV hierarchy; D-modules; EQUATIONS; SOLITON; SPACE; FLOW;
D O I
10.2206/kyushujm.73.123
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The manifold M of star-shaped curves in R-n is considered via the theory of connections on vector bundles, and cyclic D-modules. The appropriate notion of an 'integral curve' (i.e. certain admissible deformations) on M is defined, and the resulting space of admissible deformations is classified via iso-spectral flows, which are shown to be described by equations from the n-KdV (Korteweg-de Vries) hierarchy.
引用
收藏
页码:123 / 144
页数:22
相关论文
共 50 条
  • [1] A Grayson-type theorem for star-shaped curves
    Fang, Jianbo
    Yang, Yunlong
    Chen, Fangwei
    COLLECTANEA MATHEMATICA, 2025, 76 (01) : 151 - 162
  • [2] The dual generalized Chernoff inequality for star-shaped curves
    Zhang, Deyan
    Yang, Yunlong
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (02) : 272 - 282
  • [3] Star-shaped Differentiable Functions and Star-shaped Differentials
    Pan Shao-rong 1
    Communications in Mathematical Research, 2010, 26 (01) : 41 - 52
  • [4] Remarks on KdV-type flows on star-shaped curves
    Calini, Annalisa
    Ivey, Thomas
    Mari-Beffa, Gloria
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (08) : 788 - 797
  • [5] Symplectically convex and symplectically star-shaped curves: a variational problem
    Peter Albers
    Serge Tabachnikov
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [6] Symplectically convex and symplectically star-shaped curves: a variational problem
    Albers, Peter
    Tabachnikov, Serge
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (02)
  • [7] Compactness of Hardy-type operators over star-shaped regions in RN
    Jain, P
    Jain, PK
    Gupta, B
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (04): : 540 - 552
  • [8] Star-Shaped deviations
    Righi, Marcelo Brutti
    Moresco, Marlon Ruoso
    OPERATIONS RESEARCH LETTERS, 2022, 50 (05) : 548 - 554
  • [9] ASYMPTOTIC BEHAVIORS OF STAR-SHAPED CURVES EXPANDING BY V=1-K
    Yagisita, Hiroki
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2005, 18 (02) : 225 - 232
  • [10] Synthesis of Star-Shaped Polymers
    Kadam, Pravin Gopal
    Mhaske, Shashank
    DESIGNED MONOMERS AND POLYMERS, 2011, 14 (06) : 515 - 540