Lateral Adsorbate Interactions Inhibit HCOO- while Promoting CO Selectivity for CO2 Electrocatalysis on Silver

被引:113
作者
Bohra, Divya [1 ]
Ledezma-Yanez, Isis [2 ]
Li, Guanna [3 ]
de Jong, Wiebren [2 ]
Pidko, Evgeny A. [3 ]
Smith, Wilson A. [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, MECS, NL-2629 HZ Delft, Netherlands
[2] Delft Univ Technol, Dept Proc & Energy, Large Scale Energy Storage LSE, NL-2629 HZ Delft, Netherlands
[3] Delft Univ Technol, Dept Chem Engn, ISE, NL-2629 HZ Delft, Netherlands
关键词
adsorbate-adsorbate interactions; in situ studies; DFT; electrocatalysis; Raman spectroscopy; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; CATALYTIC-ACTIVITY; INSIGHTS; ENERGY; TRENDS; ELECTROREDUCTION; ELECTRODES; CONVERSION; MONOXIDE;
D O I
10.1002/anie.201811667
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ag is a promising catalyst for the production of carbon monoxide (CO) via the electrochemical reduction of carbon dioxide (CO2ER). Herein, we study the role of the formate (HCOO-) intermediate *OCHO, aiming to resolve the discrepancy between the theoretical understanding and experimental performance of Ag. We show that the first coupled proton-electron transfer (CPET) step in the CO pathway competes with the Volmer step for formation of *H, whereas this Volmer step is a prerequisite for the formation of *OCHO. We show that *OCHO should form readily on the Ag surface owing to solvation and favorable binding strength. In situ surface-enhanced Raman spectroscopy (SERS) experiments give preliminary evidence of the presence of O-bound bidentate species on polycrystalline Ag during CO2ER which we attribute to *OCHO. Lateral adsorbate interactions in the presence of *OCHO have a significant influence on the surface coverage of *H, resulting in the inhibition of HCOO- and H-2 production and a higher selectivity towards CO.
引用
收藏
页码:1345 / 1349
页数:5
相关论文
共 45 条
[1]  
[Anonymous], HDB VIBRATIONAL SPEC
[2]   Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation [J].
Appel, Aaron M. ;
Bercaw, John E. ;
Bocarsly, Andrew B. ;
Dobbek, Holger ;
DuBois, Daniel L. ;
Dupuis, Michel ;
Ferry, James G. ;
Fujita, Etsuko ;
Hille, Russ ;
Kenis, Paul J. A. ;
Kerfeld, Cheal A. ;
Morris, Robert H. ;
Peden, Charles H. F. ;
Portis, Archie R. ;
Ragsdale, Stephen W. ;
Rauchfuss, Thomas B. ;
Reek, Joost N. H. ;
Seefeldt, Lance C. ;
Thauer, Rudolf K. ;
Waldrop, Grover L. .
CHEMICAL REVIEWS, 2013, 113 (08) :6621-6658
[3]  
Bader R.F.W., 1994, ATOMS MOL QUANTUM TH
[4]   Electrochemical CO2 Reduction: A Classification Problem [J].
Bagger, Alexander ;
Ju, Wen ;
Sofia Varela, Ana ;
Strasser, Peter ;
Rossmeisl, Jan .
CHEMPHYSCHEM, 2017, 18 (22) :3266-3273
[5]   Trends in the Catalytic Activity of Hydrogen Evolution during CO2 Electroreduction on Transition Metals [J].
Cave, Etosha R. ;
Shi, Chuan ;
Kuhl, Kendra P. ;
Hatsukade, Toni ;
Abram, David N. ;
Hahn, Christopher ;
Chan, Karen ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2018, 8 (04) :3035-3040
[6]   Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J].
Centi, Gabriele ;
Perathoner, Siglinda .
CATALYSIS TODAY, 2009, 148 (3-4) :191-205
[7]   Electric Field Effects in Electrochemical CO2 Reduction [J].
Chen, Leanne D. ;
Urushihara, Makoto ;
Chan, Karen ;
Norskov, Jens K. .
ACS CATALYSIS, 2016, 6 (10) :7133-7139
[8]   Reaction Mechanisms for the Electrochemical Reduction of CO2 to CO and Formate on the Cu(100) Surface at 298 K from Quantum Mechanics Free Energy Calculations with Explicit Water [J].
Cheng, Tao ;
Xiao, Hai ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (42) :13802-13805
[9]   Electrochemical CO2 Reduction - A Critical View on Fundamentals, Materials and Applications [J].
Durst, Julien ;
Rudnev, Alexander ;
Dutta, Abhijit ;
Fu, Yongchun ;
Herranz, Juan ;
Kaliginedi, Veerabhadrarao ;
Kuzume, Akiyoshi ;
Permyakova, Anastasia A. ;
Paratcha, Yohan ;
Broekmann, Peter ;
Schmidt, Thomas J. .
CHIMIA, 2015, 69 (12) :769-776
[10]  
Edenhofer O, 2014, CLIMATE CHANGE 2014: MITIGATION OF CLIMATE CHANGE, P1