Neural Mean Discrepancy for Efficient Out-of-Distribution Detection

被引:19
|
作者
Dong, Xin [1 ]
Guo, Junfeng [2 ]
Li, Ang [2 ,3 ]
Ting, Wei-Te [1 ]
Liu, Cong [2 ]
Kung, H. T. [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] UT Dallas, Dallas, TX USA
[3] Google DeepMind, London, England
关键词
D O I
10.1109/CVPR52688.2022.01862
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Various approaches have been proposed for out-of-distribution (OOD) detection by augmenting models, input examples, training sets, and optimization objectives. Deviating from existing work, we have a simple hypothesis that standard off-the-shelf models may already contain sufficient information about the training set distribution which can be leveraged for reliable OOD detection. Our empirical study on validating this hypothesis, which measures the model activation's mean for OOD and in-distribution (ID) minibatches, surprisingly finds that activation means of OOD mini-batches consistently deviate more from those of the training data. In addition, training data's activation means can be computed offline efficiently or retrieved from batch normalization layers as a 'free lunch'. Based upon this observation, we propose a novel metric called Neural Mean Discrepancy (NMD), which compares neural means of the input examples and training data. Leveraging the simplicity of NMD, we propose an efficient OOD detector that computes neural means by a standard forward pass followed by a lightweight classifier. Extensive experiments show that NMD outperforms state-of-the-art OOD approaches across multiple datasets and model architectures in terms of both detection accuracy and computational cost.
引用
收藏
页码:19195 / 19205
页数:11
相关论文
共 50 条
  • [21] On Out-of-Distribution Detection Algorithms with Deep Neural Skin Cancer Classifiers
    Pacheco, Andre G. C.
    Sastry, Chandramouli S.
    Trappenberg, Thomas
    Oore, Sageev
    Krohling, Renato A.
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3152 - 3161
  • [22] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [23] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [24] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943
  • [25] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397
  • [26] Robust Cough Detection With Out-of-Distribution Detection
    Chen, Yuhan
    Attri, Pankaj
    Barahona, Jeffrey
    Hernandez, Michelle L.
    Carpenter, Delesha
    Bozkurt, Alper
    Lobaton, Edgar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3210 - 3221
  • [27] Exploring the Limits of Out-of-Distribution Detection
    Fort, Stanislav
    Ren, Jie
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [28] On Risk Assessment for Out-of-Distribution Detection
    Vasiliuk, Anton
    IEEE ACCESS, 2025, 13 : 18546 - 18568
  • [29] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [30] Likelihood Ratios for Out-of-Distribution Detection
    Ren, Jie
    Liu, Peter J.
    Fertig, Emily
    Snoek, Jasper
    Poplin, Ryan
    DePristo, Mark A.
    Dillon, Joshua V.
    Lakshminarayanan, Balaji
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32