Modeling Deep Burn TRISO particle nuclear fuel

被引:13
作者
Besmann, T. M. [1 ]
Stoller, R. E. [1 ]
Samolyuk, G. [1 ]
Schuck, P. C. [1 ]
Golubov, S. I. [1 ]
Rudin, S. P. [3 ]
Wills, J. M. [3 ]
Coe, J. D. [3 ]
Wirth, B. D. [2 ]
Kim, S. [4 ]
Morgan, D. D. [4 ]
Szlufarska, I. [4 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Knoxville, TN 37996 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Univ Wisconsin, Madison, WI 53706 USA
关键词
FISSION-PRODUCT RELEASE; RESEARCH-AND-DEVELOPMENT; THERMAL-CONDUCTIVITY; INTERFACE REACTIONS; THIN-FILMS; AB-INITIO; TEMPERATURE; ZRC; IRRADIATION; PALLADIUM;
D O I
10.1016/j.jnucmat.2012.06.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:181 / 189
页数:9
相关论文
共 66 条
  • [1] FactSage thermochemical software and databases
    Bale, C
    Chartrand, P
    Degterov, SA
    Eriksson, G
    Hack, K
    Ben Mahfoud, R
    Melançon, J
    Pelton, AD
    Petersen, S
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2002, 26 (02): : 189 - 228
  • [2] Modeling the thermochemical behavior of AmO2-x
    Besmann, Theodore M.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2010, 402 (01) : 25 - 29
  • [3] Thermochemical assessment of oxygen gettering by SiC or ZrC in PuO2-x TRISO fuel
    Besmann, Theodore M.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2010, 397 (1-3) : 69 - 73
  • [4] Interface reactions between silicon carbide and metals (Ni, Cr, Pd, Zr)
    Bhanumurthy, K
    Schmid-Fetzer, R
    [J]. COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2001, 32 (3-4) : 569 - 574
  • [5] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [7] MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES
    CALLAWAY, J
    [J]. PHYSICAL REVIEW, 1959, 113 (04): : 1046 - 1051
  • [8] An analytical model for the Amoeba effect in UO2 fuel pellets
    Choi, Yong
    Lee, Jong K.
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2006, 357 (1-3) : 213 - 220
  • [9] High temperature interface reactions of TiC, TiN, and SiC with palladium and rhodium
    Demkowicz, Paul
    Wright, Karen
    Gan, Jian
    Petti, David
    [J]. SOLID STATE IONICS, 2008, 179 (39) : 2313 - 2321
  • [10] Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
    Elstner, M
    Porezag, D
    Jungnickel, G
    Elsner, J
    Haugk, M
    Frauenheim, T
    Suhai, S
    Seifert, G
    [J]. PHYSICAL REVIEW B, 1998, 58 (11): : 7260 - 7268