On Graphs with Bounded and Unbounded Convergence Times in Social Hegselmann-Krause Dynamics

被引:0
|
作者
Parasnis, Rohit [1 ]
Franceschetti, Massimo [1 ]
Touri, Behrouz [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA
来源
2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC) | 2019年
基金
美国国家科学基金会;
关键词
OPINION DYNAMICS; MODEL;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of identifying physical connectivity graphs that guarantee a finite upper bound on the time required for the associated social Hegselmann-Krause dynamics to epsilon-converge to the steady state. We handle the cases of consensus as well as non-consensus steady states, and for each case, we provide sufficient conditions for a physical connectivity graph to have unbounded epsilon-convergence time. We then show that every complete r-partite graph on n vertices has a finite maximum epsilon-convergence time, regardless of the values of r and n. Finally, we show that enhancing the connectivity of agents may not always speed up convergence to the steady state, even when the steady state is a consensus.
引用
收藏
页码:6431 / 6436
页数:6
相关论文
共 31 条
  • [1] On the Convergence Properties of Social Hegselmann-Krause Dynamics
    Parasnis, Rohit Yashodhar
    Franceschetti, Massimo
    Touri, Behrouz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (02) : 589 - 604
  • [2] Mixed Hegselmann-Krause dynamics on infinite graphs
    Li, Hsin-Lun
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2024, 2024 (11):
  • [3] On Convergence Rate of Scalar Hegselmann-Krause Dynamics
    Mohajer, Soheil
    Touri, Behrouz
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 206 - 210
  • [4] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    Su, Wei
    Gu, YaJuan
    Wang, Sha
    Yu, YongGuang
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2017, 60 (09) : 1433 - 1438
  • [5] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    SU Wei
    GU YaJuan
    WANG Sha
    YU YongGuang
    Science China(Technological Sciences), 2017, (09) : 1433 - 1438
  • [6] Partial convergence of heterogeneous Hegselmann-Krause opinion dynamics
    Wei Su
    YaJuan Gu
    Sha Wang
    YongGuang Yu
    Science China Technological Sciences, 2017, 60 : 1433 - 1438
  • [7] On the Hegselmann-Krause conjecture in opinion dynamics
    Kurz, Sascha
    Rambau, Joerg
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (06) : 859 - 876
  • [8] MIXED HEGSELMANN-KRAUSE DYNAMICS II
    LI, Hsin-lun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (05): : 2981 - 2993
  • [9] Hegselmann-Krause Dynamics with Limited Connectivity
    Parasnis, Rohit
    Franceschetti, Massimo
    Touri, Behrouz
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 5364 - 5369
  • [10] Modified Hegselmann-Krause Model with Social Pressure in Social Networks
    Li, Yanjie
    Li, Xianyong
    Du, Yajun
    Tang, Ying
    Fan, Yongquan
    2022 3RD INFORMATION COMMUNICATION TECHNOLOGIES CONFERENCE (ICTC 2022), 2022, : 199 - 205