Mechanisms of Granulin Deficiency: Lessons from Cellular and Animal Models

被引:53
作者
Kleinberger, Gernot [1 ,2 ]
Capell, Anja [3 ]
Haass, Christian [3 ,4 ,5 ]
Van Broeckhoven, Christine [1 ,2 ]
机构
[1] Univ Antwerp VIB, Dept Mol Genet, Neurodegenerat Brain Dis Grp, CDE, B-2610 Antwerp, Belgium
[2] Univ Antwerp, Inst Born Bunge, Neurogenet Lab, B-2020 Antwerp, Belgium
[3] Univ Munich, Adolf Butenandt Inst, Munich, Germany
[4] German Ctr Neurodegenerat Dis DZNE, Munich, Germany
[5] Munich Cluster Syst Neurol SyNergy, Munich, Germany
关键词
Neurodegeneration; FTD; Progranulin; Granulins; Cellular model; Animal model; Growth factor; Therapy; FRONTOTEMPORAL LOBAR DEGENERATION; AMYOTROPHIC-LATERAL-SCLEROSIS; TAU-NEGATIVE INCLUSIONS; STEROID-INDUCIBLE GENE; MAJOR RISK-FACTOR; GROWTH-FACTOR; EPITHELIN PRECURSOR; PROGRANULIN GENE; GRANULIN/EPITHELIN PRECURSOR; MUTATION CARRIERS;
D O I
10.1007/s12035-012-8380-8
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The identification of causative mutations in the (pro) granulin gene (GRN) has been a major breakthrough in the research on frontotemporal dementia (FTD). So far, all FTD-associated GRN mutations are leading to neurodegeneration through a "loss-of-function" mechanism, encouraging researchers to develop a growing number of cellular and animal models for GRN deficiency. GRN is a multifunctional secreted growth factor, and loss of its function can affect different cellular processes. Besides loss-of-function (i.e., mostly premature termination codons) mutations, which cause GRN haploinsufficiency through reduction of GRN expression, FTD-associated GRN missense mutations have also been identified. Several of these missense mutations are predicted to increase the risk of developing neurodegenerative diseases through altering various key biological properties of GRN-like protein secretion, proteolytic processing, and neurite outgrowth. With the use of cellular and animal models for GRN deficiency, the portfolio of GRN functions has recently been extended to include functions in important biological processes like energy and protein homeostasis, inflammation as well as neuronal survival, neurite outgrowth, and branching. Furthermore, GRN-deficient animal models have been established and they are believed to be promising disease models as they show accelerated aging and recapitulate at least some neuropathological features of FTD. In this review, we summarize the current knowledge on the molecular mechanisms leading to GRN deficiency and the lessons we learned from the established cellular and animal models. Furthermore, we discuss how these insights might help in developing therapeutic strategies for GRN-associated FTD.
引用
收藏
页码:337 / 360
页数:24
相关论文
共 209 条
[41]   Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21 [J].
Cruts, Marc ;
Gijselinck, Ilse ;
van der Zee, Julie ;
Engelborghs, Sebastiaan ;
Wils, Hans ;
Pirici, Daniel ;
Rademakers, Rosa ;
Vandenberghe, Rik ;
Dermaut, Bart ;
Martin, Jean-Jacques ;
van Duijn, Cornelia ;
Peeters, Karin ;
Sciot, Raf ;
Santens, Patrick ;
De Pooter, Tim ;
Mattheijssens, Maria ;
Van den Broeck, Marleen ;
Cuijt, Ivy ;
Vennekens, Krist'l ;
De Deyn, Peter P. ;
Kumar-Singh, Samir ;
Van Broeckhoven, Christine .
NATURE, 2006, 442 (7105) :920-924
[42]   Locus-specific mutation databases for neurodegenerative brain diseases [J].
Cruts, Marc ;
Theuns, Jessie ;
Van Broeckhoven, Christine .
HUMAN MUTATION, 2012, 33 (09) :1340-1344
[43]  
CULOUSCOU JM, 1993, J BIOL CHEM, V268, P10458
[44]   Cellular localization of gene expression for progranulin [J].
Daniel, R ;
He, ZH ;
Carmichael, KP ;
Halper, J ;
Bateman, A .
JOURNAL OF HISTOCHEMISTRY & CYTOCHEMISTRY, 2000, 48 (07) :999-+
[45]   Cellular Effects of Progranulin in Health and Disease [J].
De Muynck, Louis ;
Van Damme, Philip .
JOURNAL OF MOLECULAR NEUROSCIENCE, 2011, 45 (03) :549-560
[46]   Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS [J].
DeJesus-Hernandez, Mariely ;
Mackenzie, Ian R. ;
Boeve, Bradley F. ;
Boxer, Adam L. ;
Baker, Matt ;
Rutherford, Nicola J. ;
Nicholson, Alexandra M. ;
Finch, NiCole A. ;
Flynn, Heather ;
Adamson, Jennifer ;
Kouri, Naomi ;
Wojtas, Aleksandra ;
Sengdy, Pheth ;
Hsiung, Ging-Yuek R. ;
Karydas, Anna ;
Seeley, William W. ;
Josephs, Keith A. ;
Coppola, Giovanni ;
Geschwind, Daniel H. ;
Wszolek, Zbigniew K. ;
Feldman, Howard ;
Knopman, David S. ;
Petersen, Ronald C. ;
Miller, Bruce L. ;
Dickson, Dennis W. ;
Boylan, Kevin B. ;
Graff-Radford, Neill R. ;
Rademakers, Rosa .
NEURON, 2011, 72 (02) :245-256
[47]   Proteolytic processing of TAR DNA binding protein-43 by caspases produces C-terminal fragments with disease defining properties independent of progranulin [J].
Dormann, Dorothee ;
Capell, Anja ;
Carlson, Aaron M. ;
Shankaran, Sunita S. ;
Rodde, Ramona ;
Neumann, Manuela ;
Kremmer, Elisabeth ;
Matsuwaki, Takashi ;
Yamanouchi, Keitaro ;
Nishihara, Masugi ;
Haass, Christian .
JOURNAL OF NEUROCHEMISTRY, 2009, 110 (03) :1082-1094
[48]   Nonaminoglycoside compounds induce readthrough of nonsense mutations [J].
Du, Liutao ;
Damoiseaux, Robert ;
Nahas, Shareef ;
Gao, Kun ;
Hu, Hailiang ;
Pollard, Julianne M. ;
Goldstine, Jimena ;
Jung, Michael E. ;
Henning, Susanne M. ;
Bertoni, Carmen ;
Gatti, Richard A. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2009, 206 (10) :2285-2297
[49]   Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis [J].
Feng, Jian Q. ;
Guo, Feng-Jin ;
Jiang, Bai-Chun ;
Zhang, Yan ;
Frenkel, Sally ;
Wang, Da-Wei ;
Tang, Wei ;
Xie, Yixia ;
Liu, Chuan-Ju .
FASEB JOURNAL, 2010, 24 (06) :1879-1892
[50]   Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS [J].
Ferraiuolo, Laura ;
Heath, Paul R. ;
Holden, Hazel ;
Kasher, Paul ;
Kirby, Janine ;
Shaw, Pamela J. .
JOURNAL OF NEUROSCIENCE, 2007, 27 (34) :9201-9219