Target Classification Using Frontal Images Measured by 77 GHz FMCW Radar through DCNN

被引:1
|
作者
Elbeialy, Mohamed [1 ]
You, Sungjin [2 ]
Jeong, Byung Jang [2 ]
Kim, Youngwook [3 ]
机构
[1] Calif State Univ Fresno, Dept Elect & Comp Engn, Fresno, CA 93740 USA
[2] Elect & Telecommun Res Inst ETRI, Daejeon 34129, South Korea
[3] Sogang Univ, Dept Elect Engn, Seoul 04107, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 20期
基金
新加坡国家研究基金会;
关键词
MW-MIMO radar; target classification; radar frontal image; deep convolutional neural network; DOPPLER;
D O I
10.3390/app122010264
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a target classification method using radar frontal imaging measured by millimeter-wave multiple-input multiple-output (MW-MIMO) radar through deep convolutional neural networks. Autonomous vehicles must classify targets in front of the vehicle to attain better situational awareness. We use 2D sparse array radar to capture the frontal images of objects on the road, such as sedans, vans, trucks, humans, poles, and trees. The frontal image includes information regarding not only the shape of a target but also the reflection characteristics of each part of the target. The measured frontal images are classified by deep convolutional neural networks, and the classification rate yielded 87.1% for six classes and 92.6% for three classes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A 77 GHz 90 nm CMOS Transceiver for FMCW Radar Applications
    Mitomo, Toshiya
    Ono, Naoko
    Hoshino, Hiroaki
    Yoshihara, Yoshiaki
    Watanabe, Osamu
    Seto, Ichiro
    2009 SYMPOSIUM ON VLSI CIRCUITS, DIGEST OF TECHNICAL PAPERS, 2009, : 246 - +
  • [22] Improving Elevation Angle Resolution with a 77 GHz FMCW Bistatic Radar
    Arnold, Oliver
    Kurz, Vera
    Biebl, Erwin
    2024 IEEE INTERNATIONAL CONFERENCE ON MICROWAVES, COMMUNICATIONS, ANTENNAS, BIOMEDICAL ENGINEERING AND ELECTRONIC SYSTEMS, COMCAS 2024, 2024,
  • [23] Indoor Tracking of Multiple Persons With a 77 GHz MIMO FMCW Radar
    Knudde, Nicolas
    Vandersmissen, Baptist
    Parashar, Karthick
    Couckuyt, Ivo
    Jalalvand, Azarakhsh
    Bourdoux, Andre
    De Neve, Wesley
    Dhaene, Tom
    2017 EUROPEAN RADAR CONFERENCE (EURAD), 2017, : 61 - 64
  • [24] An automotive radar network based on 77GHz FMCW sensors
    Fölster, F
    Rohling, H
    Lübbert, U
    2005 IEEE International Radar, Conference Record, 2005, : 871 - 876
  • [25] A Multimode-Beamforming 77-GHz FMCW Radar System
    Pfeffer, C.
    Feger, R.
    Wagner, C.
    Stelzer, A.
    2013 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST (IMS), 2013,
  • [26] UAV Detection and Ranging with 77-81 GHz FMCW Radar
    Doganay, Bengisu
    Arslan, Mustafa
    Demir, Efe Can
    Coruk, Remziye Busra
    Gokdogan, Bengisu Yalcinkaya
    Aydin, Elif
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [27] Target classification scheme using phase characteristics for automotive FMCW radar
    Lee, Jingu
    Kim, Daehyun
    Jeong, Seonghee
    Ahn, Gil-Cho
    Kim, Younglok
    ELECTRONICS LETTERS, 2016, 52 (25) : 2061 - 2062
  • [28] The development of signal processing system on urban transit application using 77 GHz FMCW radar
    Baek, JH
    Wang, JB
    Byun, YS
    Park, HJ
    URBAN TRANSPORT VII: URBAN TRANSPORT AND THE ENVIRONMENT IN THE 21ST CENTURY, 2001, 8 : 599 - 607
  • [29] Preliminary results from beehive activity monitoring using a 77 GHz FMCW radar sensor
    Dall'Asta, Luca
    Egger, Georg
    2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (IEEE METROAGRIFOR 2021), 2021, : 1 - 6
  • [30] Vehicle classification applying many-to-one input network architecture in 77-GHz FMCW radar
    Jiang, Haodong
    Zhang, Li
    Wang, Ke
    Guo, Yaozu
    Yan, Feng
    Ji, Xiaoli
    IET RADAR SONAR AND NAVIGATION, 2022, 16 (02): : 267 - 277