Target Classification Using Frontal Images Measured by 77 GHz FMCW Radar through DCNN

被引:1
|
作者
Elbeialy, Mohamed [1 ]
You, Sungjin [2 ]
Jeong, Byung Jang [2 ]
Kim, Youngwook [3 ]
机构
[1] Calif State Univ Fresno, Dept Elect & Comp Engn, Fresno, CA 93740 USA
[2] Elect & Telecommun Res Inst ETRI, Daejeon 34129, South Korea
[3] Sogang Univ, Dept Elect Engn, Seoul 04107, South Korea
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 20期
基金
新加坡国家研究基金会;
关键词
MW-MIMO radar; target classification; radar frontal image; deep convolutional neural network; DOPPLER;
D O I
10.3390/app122010264
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper proposes a target classification method using radar frontal imaging measured by millimeter-wave multiple-input multiple-output (MW-MIMO) radar through deep convolutional neural networks. Autonomous vehicles must classify targets in front of the vehicle to attain better situational awareness. We use 2D sparse array radar to capture the frontal images of objects on the road, such as sedans, vans, trucks, humans, poles, and trees. The frontal image includes information regarding not only the shape of a target but also the reflection characteristics of each part of the target. The measured frontal images are classified by deep convolutional neural networks, and the classification rate yielded 87.1% for six classes and 92.6% for three classes.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Classification of Objects in Polarimetric Radar Images Using CNNs at 77 GHz
    Visentin, Tristan
    Sagainov, Andrej
    Hasch, Juegen
    Zwick, Thomas
    2017 IEEE ASIA PACIFIC MICROWAVE CONFERENCE (APMC), 2017, : 356 - 359
  • [2] Multiple-Target Vital Signs Sensing using 77GHz FMCW radar
    Chen, Weichu
    Lan, Shengchang
    Zhang, Guiyuan
    2021 15TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2021,
  • [3] Extraction of Scattering Centers Using a 77 GHz FMCW Radar
    Abadpour, Sevda
    Diewald, Axel
    Pauli, Mario
    Zwick, Thomas
    2019 12TH GERMAN MICROWAVE CONFERENCE (GEMIC), 2019, : 79 - 82
  • [4] Human Target Detection, Tracking, and Classification Using 24-GHz FMCW Radar
    Will, Christoph
    Vaishnav, Prachi
    Chakraborty, Abhiram
    Santa, Avik
    IEEE SENSORS JOURNAL, 2019, 19 (17) : 7283 - 7299
  • [5] Target Tracking in Maritime Environment using 77 GHz FMCW-MIMO-DBS Imaging Radar
    Pirkani, Anum
    Stove, Andy
    Cherniakov, Mikhail
    Robertson, Duncan
    Gashinova, Marina
    2024 INTERNATIONAL RADAR SYMPOSIUM, IRS 2024, 2024, : 97 - 102
  • [6] Application of a 24 GHz FMCW Automotive Radar for Urban Target Classification
    Villeval, Shahar
    Bilik, Igal
    Gurbuz, Sevgi Zubeyde
    2014 IEEE RADAR CONFERENCE, 2014, : 1237 - 1240
  • [7] Two -step Moving Target Detection Algorithm for Automotive 77 GHz FMCW Radar
    Hyun, Eugin
    Oh, Woojin
    Lee, Jong-Hun
    2010 IEEE 72ND VEHICULAR TECHNOLOGY CONFERENCE FALL, 2010,
  • [8] A fixed IF 77-GHz FMCW Radar Sensor
    Haderer, Andreas
    Feger, Reinhard
    Schrattenecker, Jochen
    Wagner, Christoph
    Stelzer, Andreas
    APMC: 2008 ASIA PACIFIC MICROWAVE CONFERENCE (APMC 2008), VOLS 1-5, 2008, : 1658 - +
  • [9] Radar Cross Section Measurement with 77 GHz Automotive FMCW Radar
    Lee, Seongwook
    Kang, Seokhyun
    Kim, Seong-Cheol
    Lee, Jae-Eun
    2016 IEEE 27TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2016, : 1083 - 1088
  • [10] Human-vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar
    Lee, Seongwook
    Yoon, Young-Jun
    Lee, Jae-Eun
    Kim, Seong-Cheol
    IET RADAR SONAR AND NAVIGATION, 2017, 11 (10): : 1589 - 1596