Hamiltonian formalism of fractional systems

被引:46
作者
Stanislavsky, AA [1 ]
机构
[1] Inst Radio Astron, UA-61002 Kharkov, Ukraine
关键词
D O I
10.1140/epjb/e2006-00023-3
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper we consider a generalized classical mechanics with fractional derivatives. The generalization is based on the time-clock randomization of momenta and coordinates taken from the conventional phase space. The fractional equations of motion are derived using the Hamiltonian formalism. The approach is illustrated with a simple-fractional oscillator in a free motion and under an external force. Besides the behavior of the coupled fractional oscillators is analyzed. The natural extension of this approach to continuous systems is stated. The interpretation of the mechanics is discussed.
引用
收藏
页码:93 / 101
页数:9
相关论文
共 46 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]   Response characteristics of a fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Clarke, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 309 (3-4) :275-288
[3]   Dynamics of the fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Enck, T ;
Clarke, T .
PHYSICA A, 2001, 297 (3-4) :361-367
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]  
Andronov A. A., 1966, THEORY OSCILLATORS
[6]   LIMIT THEOREMS FOR OCCUPATION TIMES OF MARKOV PROCESSES [J].
BINGHAM, NH .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 17 (01) :1-&
[7]   Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk [J].
Bisquert, J .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[8]   Levy model for interstellar scintillations [J].
Boldyrev, S ;
Gwinn, CR .
PHYSICAL REVIEW LETTERS, 2003, 91 (13)
[9]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[10]   Fractional kinetics for relaxation and superdiffusion in a magnetic field [J].
Chechkin, AV ;
Gonchar, VY ;
Szydlowski, M .
PHYSICS OF PLASMAS, 2002, 9 (01) :78-88