GPR41 modulates insulin secretion and gene expression in pancreatic -cells and modifies metabolic homeostasis in fed and fasting states

被引:70
作者
Veprik, Anna [1 ]
Laufer, Dana [1 ]
Weiss, Sara [1 ]
Rubins, Nir [1 ]
Walker, Michael D. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biomol Sci, POB 26, IL-76100 Rehovot, Israel
关键词
diabetes; SCFA; glucose; islet; FFAR3; fasting; PROTEIN-COUPLED RECEPTOR; FATTY-ACID RECEPTORS; GLUCOSE-TOLERANCE; ENCODING GPR40; PROPIONATE; MICROBIOTA; TARGETS; ETHANOL; ISLETS; FFA2;
D O I
10.1096/fj.201500030R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Insulin secretion by pancreatic -cells is primarily regulated by glucose; however, hormones and additional nutrients, such as long-chain fatty acids, also play an important role in adjusting insulin output to physiologic needs. To examine the role of short-chain fatty acids (SCFAs) in -cell function, we analyzed mouse models of gain and loss of function of GPR41 (FFAR3), a receptor for SCFAs, vs. wild-type control mice. GPR41 gain of function [GPR41-overexpressing transgenic (41 Tg) model] and GPR41 loss of function [GPR41-knockout (KO 41) model] resulted in complementary changes in glucose tolerance, without significant effects on insulin sensitivity. KO 41 mice showed fasting hypoglycemia, which was consistent with increased basal and glucose-induced insulin secretion by islets in vitro. Mirroring this, 41 Tg islets showed impaired glucose responsiveness in vitro. Microarray analysis of islets from 41 Tg mice indicated significant alterations in gene expression patterns; several of the altered genes were chosen for further analysis and were also observed to change upon incubation of islets and cultured -cells with SCFAs in a GPR41-dependent manner. Taken together, our results indicate that GPR41 and its ligands, SCFAs, may play an important role in the fine-tuning of insulin secretion in fed and fasting states.Veprik, A., Laufer, D., Weiss, S., Rubins, N., Walker, M. D. GPR41 modulates insulin secretion and gene expression in pancreatic -cells and modifies metabolic homeostasis in fed and fasting states.
引用
收藏
页码:3860 / 3869
页数:10
相关论文
共 31 条
[1]   Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes [J].
Ahren, Bo .
NATURE REVIEWS DRUG DISCOVERY, 2009, 8 (05) :369-385
[2]   Regulation of the gene encoding GPR40, a fatty acid receptor expressed selectively in pancreatic β cells [J].
Bartoov-Shifman, Reut ;
Ridner, Gabriela ;
Bahar, Keren ;
Rubins, Nir ;
Walker, Michael D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (32) :23561-23571
[3]   Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content [J].
Bellahcene, Mohamed ;
O'Dowd, Jacqueline F. ;
Wargent, Ed T. ;
Zaibi, Mohamed S. ;
Hislop, David C. ;
Ngala, Robert A. ;
Smith, David M. ;
Cawthorne, Michael A. ;
Stocker, Claire J. ;
Arch, Jonathan R. S. .
BRITISH JOURNAL OF NUTRITION, 2013, 109 (10) :1755-1764
[4]   Free Fatty Acids Induce a Proinflammatory Response in Islets via the Abundantly Expressed Interleukin-1 Receptor I [J].
Boeni-Schnetzler, Marianne ;
Boller, Simone ;
Debray, Sarah ;
Bouzakri, Karim ;
Meier, Daniel T. ;
Prazak, Richard ;
Kerr-Conte, Julie ;
Pattou, Francois ;
Ehses, Jan A. ;
Schuit, Frans C. ;
Donath, Marc Y. .
ENDOCRINOLOGY, 2009, 150 (12) :5218-5229
[5]   Impaired Islet Function in Commonly Used Transgenic Mouse Lines due to Human Growth Hormone Minigene Expression [J].
Brouwers, Bas ;
de Faudeur, Geoffroy ;
Osipovich, Anna B. ;
Goyvaerts, Lotte ;
Lemaire, Katleen ;
Boesmans, Leen ;
Cauwelier, Elisa J. G. ;
Granvik, Mikaela ;
Pruniau, Vincent P. E. G. ;
Van Lommel, Leentje ;
Van Schoors, Jolien ;
Stancill, Jennifer S. ;
Smolders, Ilse ;
Goffin, Vincent ;
Binart, Nadine ;
in't Veld, Peter ;
Declercq, Jeroen ;
Magnuson, Mark A. ;
Creemers, John W. M. ;
Schuit, Frans ;
Schraenen, Anica .
CELL METABOLISM, 2014, 20 (06) :979-990
[6]   The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids [J].
Brown, AJ ;
Goldsworthy, SM ;
Barnes, AA ;
Eilert, MM ;
Tcheang, L ;
Daniels, D ;
Muir, AI ;
Wigglesworth, MJ ;
Kinghorn, I ;
Fraser, NJ ;
Pike, NB ;
Strum, JC ;
Steplewski, KM ;
Murdock, PR ;
Holder, JC ;
Marshall, FH ;
Szekeres, PG ;
Wilson, S ;
Ignar, DM ;
Foord, SM ;
Wise, A ;
Dowell, SJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (13) :11312-11319
[7]   SHORT CHAIN FATTY-ACIDS IN HUMAN LARGE-INTESTINE, PORTAL, HEPATIC AND VENOUS-BLOOD [J].
CUMMINGS, JH ;
POMARE, EW ;
BRANCH, WJ ;
NAYLOR, CPE ;
MACFARLANE, GT .
GUT, 1987, 28 (10) :1221-1227
[8]   Microbiota-Generated Metabolites Promote Metabolic Benefits via Gut-Brain Neural Circuits [J].
De Vadder, Filipe ;
Kovatcheva-Datchary, Petia ;
Goncalves, Daisy ;
Vinera, Jennifer ;
Zitoun, Carine ;
Duchampt, Adeline ;
Backhed, Fredrik ;
Mithieux, Gilles .
CELL, 2014, 156 (1-2) :84-96
[9]   Increased number of islet-associated macrophages in type 2 diabetes [J].
Ehses, Jan A. ;
Perren, Aurel ;
Eppler, Elisabeth ;
Ribaux, Pascale ;
Pospisilik, John A. ;
Maor-Cahn, Ranit ;
Gueripel, Xavier ;
Ellingsgaard, Helga ;
Schneider, Marten K. J. ;
Biollaz, Gregoire ;
Fontana, Adriano ;
Reinecke, Manfred ;
Homo-Delarche, Francoise ;
Donath, Marc Y. .
DIABETES, 2007, 56 (09) :2356-2370
[10]   GPR41 Gene Expression Is Mediated by Internal Ribosome Entry Site (IRES)-dependent Translation of Bicistronic mRNA Encoding GPR40 and GPR41 Proteins [J].
Halpern, Keren Bahar ;
Veprik, Anna ;
Rubins, Nir ;
Naaman, Orly ;
Walker, Michael D. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2012, 287 (24) :20154-20163