On the Growth Rate of Arbitrary Sequences of Double Rectangular Fourier Sums

被引:1
|
作者
Antonov, N. Yu. [1 ]
机构
[1] Russian Acad Sci, Ural Branch, Inst Math & Mech, Ekaterinburg 620990, Russia
基金
俄罗斯基础研究基金会;
关键词
multiple trigonometric Fourier series; almost everywhere convergence; SERIES; CONVERGENCE;
D O I
10.1134/S0081543811050026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theorem is proved that an arbitrary sequence {S-mk,S-nk(f, x, y)}(k=1)(infinity) of double rectangular Fourier sums of any function from the class L(ln(+) L)(2)([0, 2 pi)(2)) satisfies the relation S-mk,S-nk (f, x, y) = o(ln k) almost everywhere.
引用
收藏
页码:S14 / S20
页数:7
相关论文
共 31 条