Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems

被引:124
作者
Bandodkar, A. J. [1 ,2 ]
Lee, S. P. [2 ,3 ]
Huang, I [1 ]
Li, W. [3 ]
Wang, S. [2 ]
Su, C-J [2 ]
Jeang, W. J. [1 ]
Hang, T. [4 ]
Mehta, S. [2 ]
Nyberg, N. [5 ]
Gutruf, P. [6 ,7 ,8 ,9 ]
Choi, J. [10 ]
Koo, J. [11 ]
Reeder, J. T. [1 ,2 ]
Tseng, R. [12 ]
Ghaffari, R. [2 ,3 ,13 ]
Rogers, J. A. [1 ,2 ,13 ,14 ,15 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Ctr Biointegrated Elect, Querrey Simpson Inst Bioelect, Evanston, IL 60208 USA
[3] Epicore Biosyst Inc, Cambridge, MA 02139 USA
[4] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Met Matrix Composites, Shanghai, Peoples R China
[5] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[6] Univ Arizona, Dept Biomed Engn, Tucson, AZ USA
[7] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[8] Univ Arizona, Inst Bio5, Tucson, AZ USA
[9] Univ Arizona, Neurosci GIDP, Tucson, AZ USA
[10] Kookmin Univ, Sch Mech Engn, Seoul, South Korea
[11] Korea Univ, Sch Biomed Engn, Seoul, South Korea
[12] Northwestern Univ, Dept Neurobiol, Evanston, IL USA
[13] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
[14] Northwestern Univ, Dept Elect Engn & Comp Sci, Evanston, IL 60208 USA
[15] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
SENSOR; CHLORIDE; MAGNESIUM; CORROSION; ALUMINUM; ALLOY; CELLS;
D O I
10.1038/s41928-020-0443-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent advances in materials, mechanics and design have led to the development of ultrathin, lightweight electronic devices that can conformally interface with human skin. With few exceptions, these devices rely on electrical power to support sensing, wireless communication and signal conditioning. Unfortunately, most sources of such power consist of batteries constructed using hazardous materials, often with form factors that frustrate incorporation into skin-like, or epidermal, electronic devices. Here we report a biocompatible, sweat-activated battery technology that can be embedded within a soft, microfluidic platform. The battery can be used in a detachable electronic module that contains wireless communication and power management systems, and is capable of continuous on-skin recording of physiological signals. To illustrate the practical utility of our approach, we show using human trials that the sweat-activated batteries can operate hybrid microfluidic/microelectronic systems that simultaneously monitor heart rate, sweat chloride and sweat pH. Sweat-activated, biocompatible batteries can be used to power flexible on-skin electronic systems that monitor and wirelessly transmit physiological signals.
引用
收藏
页码:554 / +
页数:11
相关论文
共 55 条
  • [1] Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat
    Bandodkar, Amay J.
    Gutruf, Philipp
    Choi, Jungil
    Lee, KunHyuck
    Sekine, Yurina
    Reeder, Jonathan T.
    Jeang, William J.
    Aranyosi, Alexander J.
    Lee, Stephen P.
    Model, Jeffrey B.
    Ghaffari, Roozbeh
    Su, Chun-Ju
    Leshock, John P.
    Ray, Tyler
    Verrillo, Anthony
    Thomas, Kyle
    Krishnamurthi, Vaishnavi
    Han, Seungyong
    Kim, Jeonghyun
    Krishnan, Siddharth
    Hang, Tao
    Rogers, John A.
    [J]. SCIENCE ADVANCES, 2019, 5 (01):
  • [2] Review-Wearable Biofuel Cells: Past, Present and Future
    Bandodkar, Amay J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (03) : H3007 - H3014
  • [3] Soft, Skin-Interfaced Microfluidic Systems with Passive Galvanic Stopwatches for Precise Chronometric Sampling of Sweat
    Bandodkar, Array J.
    Choi, Jungil
    Lee, Stephen P.
    Jeang, William J.
    Agyare, Prophecy
    Gutruf, Philipp
    Wang, Siqing
    Sponenburg, Rebecca A.
    Reeder, Jonathan T.
    Schon, Stephanie
    Ray, Tyler R.
    Chen, Shulin
    Mehta, Sunita
    Ruiz, Savanna
    Rogers, John A.
    [J]. ADVANCED MATERIALS, 2019, 31 (32)
  • [4] Wearable sweat sensors
    Bariya, Mallika
    Nyein, Hnin Yin Yin
    Javey, Ali
    [J]. NATURE ELECTRONICS, 2018, 1 (03): : 160 - 171
  • [5] An epidermal alkaline rechargeable Ag-Zn printable tattoo battery for wearable electronics
    Berchmans, Sheela
    Bandodkar, Amay J.
    Jia, Wenzhao
    Ramirez, Julian
    Meng, Ying S.
    Wang, Joseph
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (38) : 15788 - 15795
  • [6] Ambient RF Energy Harvesting From a Two-Way Talk Radio for Flexible Wearable Wireless Sensor Devices Utilizing Inkjet Printing Technologies
    Bito, Jo
    Hester, Jimmy G.
    Tentzeris, Manos M.
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2015, 63 (12) : 4533 - 4543
  • [7] ON THE ELECTROCHEMICAL-BEHAVIOR OF ALUMINUM IN ACIDIC CHLORIDE SOLUTION
    BRETT, CMA
    [J]. CORROSION SCIENCE, 1992, 33 (02) : 203 - 210
  • [8] Sodium ion concentration vs. sweat rate relationship in humans
    Buono, Michael J.
    Ball, Kimberly D.
    Kolkhorst, Fred W.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2007, 103 (03) : 990 - 994
  • [9] Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating
    Caldara, Michele
    Colleoni, Claudio
    Guido, Emanuela
    Re, Valerio
    Rosace, Giuseppe
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2016, 222 : 213 - 220
  • [10] Stretchable and Flexible Buckypaper-Based Lactate Biofuel Cell for Wearable Electronics
    Chen, Xiaohong
    Yin, Lu
    Lv, Jian
    Gross, Andrew J.
    Le, Minh
    Gutierrez, Nathaniel Georg
    Li, Yang
    Jeerapan, Itthipon
    Giroud, Fabien
    Berezovska, Anastasiia
    O'Reilly, Rachel K.
    Xu, Sheng
    Cosnier, Serge
    Wang, Joseph
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (46)