Topological robotics in lens spaces

被引:9
作者
González, J [1 ]
机构
[1] Inst Politecn Nacl, CINVESTAV, Dept Matemat, Mexico City 07000, DF, Mexico
关键词
D O I
10.1017/S030500410500873X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the work of Farber, Tabachnikov and Yuzvinsky on the motion planning problem for projective spaces, we give an estimate for the topological complexity (TC) of lens spaces in terms of certain generalized "skew" maps between spheres. This last concept turns out to be closely related to that for a generalized axial map developed by Astey, Davis and the author to characterize the smallest Euclidean dimension where (2-torsion) lens spaces can be immersed. As a result, this suggests an alternative simpler "TC-approach" to the classical immersion problem for real projective spaces, whose initial stages we settle by means of techniques in obstruction theory.
引用
收藏
页码:469 / 485
页数:17
相关论文
共 19 条
[1]  
Adem J., 1972, B SOC MAT MEX, V17, P59
[2]  
Astey L, 2003, BOL SOC MAT MEX, V9, P151
[3]   GEOMETRIC DIMENSION OF BUNDLES OVER REAL PROJECTIVE SPACES [J].
ASTEY, L .
QUARTERLY JOURNAL OF MATHEMATICS, 1980, 31 (122) :139-155
[4]  
DAVIS D, 1977, P LOND MATH SOC, V35, P333
[5]  
DAVIS D., TABLE IMMERSIONS EMB
[6]   GEOMETRIC DIMENSION OF SOME VECTOR BUNDLES OVER PROJECTIVE SPACES [J].
DAVIS, DM ;
MAHOWALD, ME .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 205 (APR) :295-315
[7]  
DAVIS DM, 1993, CONT MATH, V146, P31
[8]  
Farber M, 2003, INT MATH RES NOTICES, V2003, P1853
[9]  
Farber M, 2003, DISCRETE COMPUT GEOM, V29, P211, DOI 10.1007/S00454-002-0760-9
[10]  
FARBER M, IN PRESS TOPOLOGY AP