Temporal Visual Features and Adaptive Decision Scheme for Large-scale Video Rating System

被引:0
作者
Choi, Byeongcheol [1 ]
Han, Seungwan [1 ]
Lim, Jaedeok [1 ]
Ryou, Jaecheol [2 ]
机构
[1] Elect & Telecommun Res Inst, Informat Secur Res Div, Taejon 305606, South Korea
[2] Chungnam Natl Univ, Dept Comp Sci, Taejon, South Korea
来源
INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL | 2012年 / 15卷 / 05期
关键词
temporal visual features; adaptive decision scheme; optimal combining rule; point estimation; video rating system; IMAGE RETRIEVAL; CLASSIFICATION; RECOGNITION;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we propose three lightweight visual features and adaptive decision scheme for indecent scene detection in a large-scale video rating system. The temporal visual features consist of TMEF (Temporal Motion Energy Features), TCEF (Temporal Color Energy Features), and TCHF (Temporal Color Histogram Features). And the adaptive decision scheme uses optimal combining rule based on the properties of point estimation theory and hypothesis test. For indecent scene detection, we construct datasets of adult video segments and benign video segments with a basic unit of 30 seconds of the original movie or video track. And we use supervised learning engine of SVM (Support Vector Machine) for the performance analysis of the proposed visual features. In the experimental results, we show that TCHF and the adaptive optimal combining rule have the performance improvements in accuracy and processing time compared to the legacy MPEG-7 visual descriptors. Additionally, the proposed adaptive decision scheme can be used as a crucial piece to a robust video rating system.
引用
收藏
页码:2321 / 2331
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 2002, Introduction to MPEG-7: Multimedia Content Description Interface
[2]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[3]   The recognition of human movement using temporal templates [J].
Bobick, AF ;
Davis, JW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (03) :257-267
[4]   Image retrieval: Ideas, influences, and trends of the new age [J].
Datta, Ritendra ;
Joshi, Dhiraj ;
Li, Jia ;
Wang, James Z. .
ACM COMPUTING SURVEYS, 2008, 40 (02)
[5]  
Hayter Anthony J., 2007, PROBABILITY STAT ENG
[6]  
Hsu C.-W., 2007, PRACTICAL GUIDE SUPP
[7]   Recognition of pornographic web pages by classifying texts and images [J].
Hu, Weiming ;
Wu, Ou ;
Chen, Zhouyao ;
Fu, Zhouyu ;
Maybank, Steve .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (06) :1019-1034
[8]  
Jansohn C., 2009, PROC 17 ACM INT C MU, P601, DOI DOI 10.1145/1631272.1631366
[9]  
Jones M.J., 2002, INT J COMPUT VISION, V46, P274
[10]   A survey of skin-color modeling and detection methods [J].
Kakumanu, P. ;
Makrogiannis, S. ;
Bourbakis, N. .
PATTERN RECOGNITION, 2007, 40 (03) :1106-1122