On the Convergence of a Class of Nonlocal Elliptic Equations and Related Optimal Design Problems

被引:14
作者
Andres, Fuensanta [1 ]
Munoz, Julio [1 ]
机构
[1] Univ Castilla La Mancha, Toledo, Spain
关键词
Approximation of partial differential equations; Optimal control; Integral equations; G-convergence; VECTOR CALCULUS; APPROXIMATION; EXISTENCE; LIMIT;
D O I
10.1007/s10957-016-1021-z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A convergence result for a nonlocal differential equation problem is proved. As a by-product, some results about the convergence for a type of nonlocal optimal design are given. Since these problems give rise to local design problems in the limit, different results on classical existence are obtained as well. Concerning the nonlocal formulation, the state equation is of nonlocal elliptic type and the cost functional we analyze includes, among other cases, an approximation of the square of the gradient.
引用
收藏
页码:33 / 55
页数:23
相关论文
共 41 条
[21]  
Cherkaev A., 1997, TOPICS MATH MODELING
[22]  
D'Elia M., 2013, ARXIV13102558V1MATHO
[23]   OPTIMAL DISTRIBUTED CONTROL OF NONLOCAL STEADY DIFFUSION PROBLEMS [J].
D'Elia, Marta ;
Gunzburger, Max .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (01) :243-273
[24]  
Dal G., 1993, MASO INTRO GAMMA CON
[25]  
Delfour M, 2011, ADV DES CONTROL, pXIX, DOI 10.1137/1.9780898719826
[26]   A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS [J].
Du, Qiang ;
Gunzburger, Max ;
Lehoucq, R. B. ;
Zhou, Kun .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (03) :493-540
[27]   Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints [J].
Du, Qiang ;
Gunzburger, Max ;
Lehoucq, R. B. ;
Zhou, Kun .
SIAM REVIEW, 2012, 54 (04) :667-696
[28]   A NONLOCAL VECTOR CALCULUS WITH APPLICATION TO NONLOCAL BOUNDARY VALUE PROBLEMS [J].
Gunzburger, Max ;
Lehoucq, R. B. .
MULTISCALE MODELING & SIMULATION, 2010, 8 (05) :1581-1598
[29]  
Hernandez-Lerma O., 2000, J APPL MATH STOCH AN, V13, P137, DOI DOI 10.1155/S1048953300000150
[30]   Dirichlet's principle and wellposedness of solutions for a nonlocal p-Laplacian system [J].
Hinds, Brittney ;
Radu, Petronela .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1411-1419