The Liouville theorem and linear operators satisfying the maximum principle

被引:13
作者
Alibaud, Nathael [1 ,2 ]
del Teso, Felix [3 ]
Endal, Jorgen [4 ]
Jakobsen, Espen R. [4 ]
机构
[1] ENSMM, 26 Chemin Epitaphe, F-25030 Besancon, France
[2] Univ Bourgogne Franche Comte UBFC, LMB, UMR CNRS 6623, Besancon, France
[3] Univ Complutense Madrid UCM, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
[4] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, N-7491 Trondheim, Norway
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2020年 / 142卷
关键词
Nonlocal degenerate elliptic operators; Courrege theorem; Levy-Khintchine formula; Liouville theorem; Periodic solutions; Propagation of maximum; Subgroups of R-d; Kronecker theorem; DISTRIBUTIONAL SOLUTIONS; HARMONIC FUNCTIONS; EQUATIONS;
D O I
10.1016/j.matpur.2020.08.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A result by Courrege says that linear translation invariant operators satisfy the maximum principle if and only if they are of the form L = L-sigma,L-b + L-mu where L-sigma,L-b[u](x) = tr(sigma sigma(T) D(2)u(x)) + b . Du(x) and L-mu[u](x) = integral(Rd\{0}) (u(x + z) - u(x) - z . Du(x)1(vertical bar <=vertical bar 1)) d(mu)(z). This class of operators coincides with the infinitesimal generators of Levy processes in probability theory. In this paper we give a complete characterization of the operators of this form that satisfy the Liouville theorem: Bounded solutions u of L[u] = 0 in R-d are constant. The Liouville property is obtained as a consequence of a periodicity result that completely characterizes bounded distributional solutions of L[u] = 0 in R-d. The proofs combine arguments from PDEs and group theory. They are simple and short. (C) 2020 The Authors. Published by Elsevier Masson SAS.
引用
收藏
页码:229 / 242
页数:14
相关论文
共 31 条
[1]  
Andreu-Vaillo F., 2010, MATH SURVEYS MONOGRA, V165
[2]  
[Anonymous], 1972, Grundlehren math. Wiss.
[3]  
Barlow MT, 2000, COMMUN PUR APPL MATH, V53, P1007, DOI 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO
[4]  
2-L
[5]   Liouville-type results for semilinear elliptic equations in unbounded domains [J].
Berestycki, Henri ;
Hamel, Francois ;
Rossi, Luca .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2007, 186 (03) :469-507
[6]  
Bogdan K, 2002, ILLINOIS J MATH, V46, P541
[7]   PHASE TRANSITIONS WITH MIDRANGE INTERACTIONS: A NONLOCAL STEFAN MODEL [J].
Braendle, Cristina ;
Chasseigne, Emmanuel ;
Quiros, Fernando .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) :3071-3100
[8]  
Brasseur J., 2018, ARXIV180407485V1MATH
[9]   Liouville type results for a nonlocal obstacle problem [J].
Brasseur, Julien ;
Coville, Jerome ;
Hamel, Francois ;
Valdinoci, Enrico .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 119 (02) :291-328
[10]   Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates [J].
Cabre, Xavier ;
Sire, Yannick .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01) :23-53