AN INTERPOLATION THEORY APPROACH TO SHELL EIGENVALUE PROBLEMS

被引:8
作者
Da Veiga, L. Beirao [3 ]
Lovadina, C. [1 ,2 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[2] IMATI CNR, I-27100 Pavia, Italy
[3] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
Koiter shell; interpolation theory;
D O I
10.1142/S0218202508003273
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior of the smallest eigenvalue in linear shell problems is studied, as the thickness parameter tends to zero. In order to cover the widest range of mid-surface geometry and boundary conditions, an abstract approach has been followed, and the Real Interpolation Theory has been used as main tool. A result concerning the ratio between the bending and the total elastic energy is proved. Furthermore, an example of application to cylindrical shells is detailed.
引用
收藏
页码:2003 / 2018
页数:16
相关论文
共 37 条
[1]   Locking-free finite element methods for shells [J].
Arnold, DN ;
Brezzi, F .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :1-14
[2]   Remarks on the asymptotic behaviour of Koiter shells [J].
Auricchio, F ;
da Veiga, LB ;
Lovadina, C .
COMPUTERS & STRUCTURES, 2002, 80 (9-10) :735-745
[3]   A shell classification by interpolation [J].
Baiocchi, C ;
Lovadina, C .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (10) :1359-1380
[4]   An inf-sup test for shell finite elements [J].
Bathe, KJ ;
Iosilevich, A ;
Chapelle, D .
COMPUTERS & STRUCTURES, 2000, 75 (05) :439-456
[5]   An evaluation of the MITC shell elements [J].
Bathe, KJ ;
Iosilevich, A ;
Chapelle, D .
COMPUTERS & STRUCTURES, 2000, 75 (01) :1-30
[6]   A shell problem 'highly sensitive' to thickness changes [J].
Bathe, KJ ;
Chapelle, D ;
Lee, PS .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2003, 57 (08) :1039-1052
[7]  
Bergh J., 1976, INTERPOLATION SPACES
[8]  
BERNADOU M, 1976, COMPUTING METHODS EN
[9]   Existence and uniqueness for the linear Koiter model for shells with little regularity [J].
Blouza, A ;
Le Dret, H .
QUARTERLY OF APPLIED MATHEMATICS, 1999, 57 (02) :317-337
[10]   Stabilized finite element formulations for shells in a bending dominated state [J].
Chapelle, D ;
Stenberg, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :32-73