A theoretical and empirical study of a noise-tolerant algorithm to learn geometric patterns

被引:12
作者
Goldman, SA [1 ]
Scott, SD [1 ]
机构
[1] Washington Univ, Dept Comp Sci, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
noise-tolerant PAC learning; statistical query model; landmark matching problem;
D O I
10.1023/A:1007681724516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Developing the ability to recognize a landmark from a visual image of a robot's current location is a fundamental problem in robotics. We describe a way in which the landmark matching problem can be mapped to that of learning a one-dimensional geometric pattern. The first contribution of our work is an efficient noise-tolerant algorithm (designed using the statistical query model) to PAC learn the class of one-dimensional geometric patterns. The second contribution of our work is an empirical study of our algorithm that provides some evidence that statistical query algorithms may be valuable for use in practice for handling noisy data.
引用
收藏
页码:5 / 49
页数:45
相关论文
共 34 条
[1]  
[Anonymous], INTRO COMPUTATIONAL
[2]  
Anthony Martin., 1992, COMPUTATIONAL LEARNI
[3]  
ASLAM A, 1998, IN PRESS J COMPUTER
[4]  
ASLAM A, 1993, P 34 ANN S FDN COMP, P282
[5]  
AUER P, 1997, MACH LEARN, P21
[6]  
AUER P, 1997, P 29 ANN ACM S THEOR, P314
[7]   OCCAM RAZOR [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
INFORMATION PROCESSING LETTERS, 1987, 24 (06) :377-380
[8]   LEARNABILITY AND THE VAPNIK-CHERVONENKIS DIMENSION [J].
BLUMER, A ;
EHRENFEUCHT, A ;
HAUSSLER, D ;
WARMUTH, MK .
JOURNAL OF THE ACM, 1989, 36 (04) :929-965
[9]  
Decatur S. E., 1993, Proceeding of the Sixth Annual ACM Conference on Computational Learning Theory, P262, DOI 10.1145/168304.168346
[10]   A GENERAL LOWER BOUND ON THE NUMBER OF EXAMPLES NEEDED FOR LEARNING [J].
EHRENFEUCHT, A ;
HAUSSLER, D ;
KEARNS, M ;
VALIANT, L .
INFORMATION AND COMPUTATION, 1989, 82 (03) :247-261