Design of robust model predictive control with input constraints

被引:6
作者
Quang Thuan Nguyen [1 ]
Vesely, Vojtech [1 ]
Rosinova, Danica [1 ]
机构
[1] Slovak Univ Technol Bratislava, Inst Control & Ind Informat, Fac Elect Engn & Informat Technol, Bratislava 81219, Slovakia
关键词
robust model predictive control; polytopic system; parameter-dependent quadratic stability; Lyapunov functional; STABILITY; SET;
D O I
10.1080/00207721.2011.627476
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article addresses the problem of designing a robust output feedback model predictive control (MPC) with input constraints, which ensures a parameter-dependent quadratic stability and guaranteed cost for the case of linear polytopic systems. A new heuristic method is introduced to guarantee input constraints for the MPC. To reject disturbances and maintain the process at the optimal operating conditions or setpoints, the integrator is added to the controller design procedure. Finally, some numerical examples are given to illustrate the effectiveness of the proposed method.
引用
收藏
页码:896 / 907
页数:12
相关论文
共 20 条
[1]   An Application of Robust Model Predictive Control with Integral Action [J].
Akcakaya, Halil ;
Sumer, Leyla Goren .
INSTRUMENTATION SCIENCE & TECHNOLOGY, 2009, 37 (04) :410-430
[2]  
Bian MM, 2010, PROCEEDINGS OF 2010 INTERNATIONAL SYMPOSIUM ON IMAGE ANALYSIS AND SIGNAL PROCESSING, P1, DOI 10.1109/GROUP4.2010.5643446
[3]   Robust constrained predictive control of uncertain norm-bounded linear systems [J].
Casavola, A ;
Famularo, D ;
Franzé, G .
AUTOMATICA, 2004, 40 (11) :1865-1876
[4]  
Culligan K, 2007, P AMER CONTR CONF, P5782
[5]   A synthesis approach for output feedback robust constrained model predictive control [J].
Ding, Baocang ;
Xi, Yugeng ;
Cychowski, Marcin T. ;
O'Mahony, Thomas .
AUTOMATICA, 2008, 44 (01) :258-264
[6]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[7]  
Lee J.H., 1997, Chemical Process Control - V, V93, P201
[8]   Min-max predictive control techniques for a linear state-space system with a bounded set of input matrices [J].
Lee, JH ;
Cooley, BL .
AUTOMATICA, 2000, 36 (03) :463-473
[9]  
Lee JH, 1997, P AMER CONTR CONF, P2945, DOI 10.1109/ACC.1997.611997
[10]  
Limon D, 2009, LECT NOTES CONTR INF, V384, P1, DOI 10.1007/978-3-642-01094-1_1