Structure and properties of InGaAs layers grown by low-temperature molecular-beam epitaxy

被引:15
作者
Vilisova, MD [1 ]
Ivonin, IV
Lavrentieva, LG
Subach, SV
Yakubenya, MP
Preobrazhenskii, VV
Putyato, MA
Semyagin, BR
Bert, NA
Musikhin, YG
Chaldyshev, VV
机构
[1] Tomsk State Univ, Siberian Physicotech Inst, Tomsk 634050, Russia
[2] Russian Acad Sci, Inst Semicond Phys, Siberian Branch, Novosibirsk 630090, Russia
[3] Russian Acad Sci, AF Ioffe Physicotech Inst, St Petersburg 194021, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/1.1187790
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
This paper describes studies of InGaAs layers grown by molecular-beam epitaxy on InP (100) substrates at temperatures of 150-480 degrees C using various arsenic fluxes. It was found that lowering the epitaxy temperature leads to changes in the growth surface, trapping of excess arsenic, and an increased lattice parameter of the epitaxial layer. When these low-temperature (LT) grown samples are annealed, the lattice parameter relaxes and excess arsenic clusters form in the InGaAs matrix. For samples grown at 150 degrees C and annealed at 500 degrees C, the concentration of these clusters was similar to 8x10(16) cm(-3), with an average cluster size of similar to 5 nm. Assuming that all the excess arsenic is initially trapped in the form of antisite defects, the magnitude of the LT-grown InGaAs lattice parameter relaxation caused by annealing implies an excess arsenic concentration (N-As-N-Ga-N-In)/(N-As+N-Ga+N-In)=0.4 at.%. For layers of InGaAs grown at 150 degrees C, a high concentration of free electrons (similar to 1x10(18) cm(-3)) is characteristic. Annealing such layers at 500 degrees C decreases the concentration of electrons to similar to 1x10(17) cm(-3). The results obtained here indicate that this change in the free-electron concentration correlates qualitatively with the change in excess arsenic concentration in the layers. (C) 1999 American Institute of Physics. [S1063-7826(99)00208-2].
引用
收藏
页码:824 / 829
页数:6
相关论文
共 50 条
[21]   SUBSTRATE ORIENTATION DEPENDENCE OF LOW-TEMPERATURE GAAS GROWN BY MOLECULAR-BEAM EPITAXY [J].
CHENG, TM ;
CHANG, CY ;
HUANG, JH .
APPLIED PHYSICS LETTERS, 1995, 66 (01) :55-57
[22]   Photoreflectance and photoluminescence spectroscopy of low-temperature GaAs grown by molecular-beam epitaxy [J].
Sinha, S ;
Arora, BM ;
Subramanian, S .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (01) :427-432
[23]   LOW-TEMPERATURE EPITAXY OF SILICON BY MOLECULAR-BEAM EPITAXY (MBE) [J].
KASPER, E .
1980, 53 (4-5) :170-176
[24]   DOMINANT DEEP-LEVEL IN ANNEALED LOW-TEMPERATURE GAAS-LAYERS GROWN BY MOLECULAR-BEAM EPITAXY [J].
LIN, TC ;
KAIBE, HT ;
OKUMURA, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1994, 33 (12A) :L1651-L1654
[25]   Characterization of low-temperature molecular-beam-epitaxy grown GaBiAs layers [J].
Pacebutas, V. ;
Bertulis, K. ;
Dapkus, L. ;
Aleksejenko, G. ;
Krotkus, A. ;
Yu, K. M. ;
Walukiewicz, W. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2007, 22 (07) :819-823
[26]   ELECTRICAL-PROPERTIES OF MOLECULAR-BEAM EPITAXIAL GAAS-LAYERS GROWN AT LOW-TEMPERATURE [J].
BETKO, J ;
KORDOS, P ;
KUKLOVSKY, S ;
FORSTER, A ;
GREGUSOVA, D ;
LUTH, H .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 1994, 28 (1-3) :147-150
[27]   X-RAY DIFFRACTOMETRIC EXAMINATIONS OF GAAS EPITAXIAL LAYERS GROWN BY MOLECULAR-BEAM EPITAXY AT LOW-TEMPERATURE [J].
LESZCZYNSKI, M ;
FRANZOSI, P .
JOURNAL OF CRYSTAL GROWTH, 1993, 134 (1-2) :151-153
[28]   ELECTRICAL-PROPERTIES OF INP GROWN BY GAS-SOURCE MOLECULAR-BEAM EPITAXY AT LOW-TEMPERATURE [J].
LIANG, BW ;
LEE, PZ ;
SHIH, DW ;
TU, CW .
APPLIED PHYSICS LETTERS, 1992, 60 (17) :2104-2106
[29]   MATERIAL PROPERTIES OF GA0.47IN0.53AS GROWN ON INP BY LOW-TEMPERATURE MOLECULAR-BEAM EPITAXY [J].
KUNZEL, H ;
BOTTCHER, J ;
GIBIS, R ;
URMANN, G .
APPLIED PHYSICS LETTERS, 1992, 61 (11) :1347-1349
[30]   Investigation of the structural properties of GaAs layers grown by molecular-beam epitaxy at low temperatures [J].
Galiev, GB ;
Imamov, RM ;
Medvedev, BK ;
Mokerov, VG ;
Mukhamedzhanov, EK ;
Pashaev, EM ;
Cheglakov, VB .
SEMICONDUCTORS, 1997, 31 (10) :1003-1005