EXISTENCE OF STEADY STATES FOR THE MAXWELL-SCHRODINGER-POISSON SYSTEM: EXPLORING THE APPLICABILITY OF THE CONCENTRATION-COMPACTNESS PRINCIPLE

被引:43
作者
Catto, I. [1 ]
Dolbeault, J. [1 ]
Sanchez, O. [2 ]
Soler, J. [2 ]
机构
[1] Univ Paris 09, CEREMADE, CNRS, UMR 7534, F-75775 Paris 16, France
[2] Univ Granada, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Steady states; variational methods; subadditivity inequality; constrained minimization; sharp nonexistence. L-2-norm constraint; Schrodinger-Poisson; Maxwell-Schrodinger; Schrodinger-Poisson-X-alpha; concentration-compactness; standing waves; semiconductors; plasma physics; ASYMPTOTIC-BEHAVIOR; CALCULUS; MINIMIZERS; STABILITY; MOLECULES; EQUATIONS; HARTREE; WAVES; ATOMS;
D O I
10.1142/S0218202513500541
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper reviews recent results and open problems concerning the existence of steady states to the Maxwell-Schrodinger system. A combination of tools, proofs and results are presented in the framework of the concentration-compactness method.
引用
收藏
页码:1915 / 1938
页数:24
相关论文
共 35 条
[1]   A variational approach to the Schrodinger-Poisson system: Asymptotic behaviour, breathers, and stability [J].
Arriola, ER ;
Soler, J .
JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) :1069-1106
[2]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[3]  
Bellazzini J., 2013, P LONDON MATH SOC
[4]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[5]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[6]   On an exchange interaction model for quantum transport:: The Schrodinger-Poisson-Slater system [J].
Bokanowski, O ;
López, JL ;
Soler, J .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (10) :1397-1412
[7]  
Bokanowski O, 2006, LECT NOTES PHYS, V690, P217
[8]   Embedding theorems and existence results for nonlinear Schrodinger-Poisson systems with unbounded and vanishing potentials [J].
Bonheure, Denis ;
Mercuri, Carlo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (4-5) :1056-1085
[9]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490