Predicting In Vitro and In Vivo Anti-SARS-CoV-2 Activities of Antivirals by Intracellular Bioavailability and Biochemical Activity

被引:3
作者
Zhang, Jinwen [1 ,2 ]
He, Mingfeng [3 ]
Xie, Qian [1 ,4 ]
Su, Ailing [1 ,5 ]
Yang, Kuangyang [3 ]
Liu, Lichu
Liang, Jianhui [1 ,4 ]
Li, Ziqi [1 ]
Huang, Xiuxin [6 ]
Hu, Jianshu [7 ]
Liu, Qian [1 ]
Song, Bing [1 ]
Hu, Chun [4 ]
Chen, Lei [8 ]
Wang, Yan [1 ]
机构
[1] Chinese Acad Sci, Ctr Translat Med Res & Dev, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R China
[2] Imperial Coll London, Dept Surg & Canc, Fac Med, London SW7 2AZ, England
[3] Foshan Hosp Tradit Chinese Med, Inst Orthoped & Traumatol, Foshan 528000, Peoples R China
[4] Shenyang Pharmaceut Univ, Key Lab Struct Based Drug Design & Discovery, Minist Educ, Sch Pharmaceut Engn, Shenyang 110016, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Mat Med, 555 Zuchongzhi Rd, Shanghai 201203, Peoples R China
[6] Changsha Med Coll, Clin Coll 1, Changsha 410219, Peoples R China
[7] Univ Oxford, Dept Pharmacol, Oxford OX1 3QT, England
[8] Southeast Univ, Sch Life Sci & Technol, Key Lab Dev Genes & Human Dis, Nanjing 210096, Peoples R China
来源
ACS OMEGA | 2022年 / 7卷 / 49期
基金
中国国家自然科学基金;
关键词
SARS-COV-2; INFECTION; HYDROXYCHLOROQUINE; CHLOROQUINE; REMDESIVIR; ALIGNMENT;
D O I
10.1021/acsomega.2c05376
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cellular drug response (concentration required for obtaining 50% of a maximum cellular effect, EC50) can be predicted by the intracellular bioavailability (Fic) and biochemical activity (half-maximal inhibitory concentration, IC50) of drugs. In an ideal model, the cellular negative log of EC50 (pEC50) equals the sum of log Fic and the negative log of IC50 (pIC50). Here, we measured Fic's of remdesivir, favipiravir, and hydroxychloroquine in various cells and calculated their anti-SARS-CoV-2 EC50's. The predicted EC50's are close to the observed EC50's in vitro. When the lung concentrations of antiviral drugs are higher than the predicted EC50's in alveolar type 2 cells, the antiviral drugs inhibit virus replication in vivo, and vice versa. Overall, our results indicate that both in vitro and in vivo antiviral activities of drugs can be predicted by their intracellular bioavailability and biochemical activity without using virus. This virus-free strategy can help medicinal chemists and pharmacologists to screen antivirals during early drug discovery, especially for researchers who are not able to work in the high-level biosafety lab.
引用
收藏
页码:45023 / 45035
页数:13
相关论文
共 66 条
[1]   Antiviral drug discovery: preparing for the next pandemic [J].
Adamson, Catherine S. ;
Chibale, Kelly ;
Goss, Rebecca J. M. ;
Jaspars, Marcel ;
Newman, David J. ;
Dorrington, Rosemary A. .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (06) :3647-3655
[2]   Interactions of anti-COVID-19 drug candidates with hepatic transporters may cause liver toxicity and affect pharmacokinetics [J].
Ambrus, Csilla ;
Bakos, Eva ;
Sarkadi, Balazs ;
Ozvegy-Laczka, Csilla ;
Telbisz, Agnes .
SCIENTIFIC REPORTS, 2021, 11 (01)
[3]   Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives [J].
Amporndanai, Kangsa ;
Meng, Xiaoli ;
Shang, Weijuan ;
Jin, Zhenmig ;
Zhao, Yao ;
Rao, Zihe ;
Liu, Zhi-Jie ;
Yang, Haitao ;
Zhang, Leike ;
O'Neill, Paul M. ;
Hasnain, S. Samar ;
Rogers, Michael .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]  
Dolgin E, 2021, NATURE, V592, P340, DOI 10.1038/d41586-021-00958-4
[5]   Favipiravir antiviral efficacy against SARS-CoV-2 in a hamster model [J].
Driouich, Jean-Selim ;
Cochin, Maxime ;
Lingas, Guillaume ;
Moureau, Gregory ;
Touret, Franck ;
Petit, Paul-Remi ;
Piorkowski, Geraldine ;
Barthelemy, Karine ;
Laprie, Caroline ;
Coutard, Bruno ;
Guedj, Jeremie ;
de Lamballerie, Xavier ;
Solas, Caroline ;
Nougairede, Antoine .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   In vitro and in vivo activities of anti-influenza virus compound T-705 [J].
Furuta, Y ;
Takahashi, K ;
Fukuda, Y ;
Kuno, M ;
Kamiyama, T ;
Kozaki, K ;
Nomura, N ;
Egawa, H ;
Minami, S ;
Watanabe, Y ;
Narita, H ;
Shiraki, K .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (04) :977-981
[7]   Structure of the RNA-dependent RNA polymerase from COVID-19 virus [J].
Gao, Yan ;
Yan, Liming ;
Huang, Yucen ;
Liu, Fengjiang ;
Zhao, Yao ;
Cao, Lin ;
Wang, Tao ;
Sun, Qianqian ;
Ming, Zhenhua ;
Zhang, Lianqi ;
Ge, Ji ;
Zheng, Litao ;
Zhang, Ying ;
Wang, Haofeng ;
Zhu, Yan ;
Zhu, Chen ;
Hu, Tianyu ;
Hua, Tian ;
Zhang, Bing ;
Yang, Xiuna ;
Li, Jun ;
Yang, Haitao ;
Liu, Zhijie ;
Xu, Wenqing ;
Guddat, Luke W. ;
Wang, Quan ;
Lou, Zhiyong ;
Rao, Zihe .
SCIENCE, 2020, 368 (6492) :779-+
[8]   Cathepsin L in COVID-19: From Pharmacological Evidences to Genetics [J].
Gomes, Caio P. ;
Fernandes, Danilo E. ;
Casimiro, Fernanda ;
Mata, Gustavo F. ;
Passos, Michelle T. ;
Varela, Patricia ;
Mastroianni-Kirsztajn, Gianna ;
Pesquero, Joao Bosco .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2020, 10
[9]   Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency [J].
Gordon, Calvin J. ;
Tchesnokov, Egor P. ;
Woolner, Emma ;
Perry, Jason K. ;
Feng, Joy Y. ;
Porter, Danielle P. ;
Gotte, Matthias .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2020, 295 (20) :6785-6797
[10]  
Han X., 2020, bioRxiv