Nanobody Based Dual Specific CARs

被引:94
作者
De Munter, Stijn [1 ]
Ingels, Joline [1 ]
Goetgeluk, Glenn [1 ]
Bonte, Sarah [1 ]
Pille, Melissa [1 ]
Weening, Karin [1 ]
Kerre, Tessa [1 ]
Abken, Hinrich [2 ,3 ]
Vandekerckhove, Bart [1 ]
机构
[1] Univ Ghent, Dept Clin Chem Microbiol & Immunol, B-9000 Ghent, Belgium
[2] Univ Cologne, CMMC, D-50923 Cologne, Germany
[3] Univ Cologne, Dept Internal Med, D-50923 Cologne, Germany
关键词
CAR T cell; nanobody; antigen escape; CHIMERIC ANTIGEN RECEPTORS; SINGLE-DOMAIN ANTIBODIES; MODIFIED T-CELLS; B-CELL; IMMUNE ESCAPE; RESISTANCE; IMMUNOTOXINS; SEGREGATION; MUTATIONS; ANTI-CD19;
D O I
10.3390/ijms19020403
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent clinical trials have shown that adoptive chimeric antigen receptor (CAR) T cell therapy is a very potent and possibly curative option in the treatment of B cell leukemias and lymphomas. However, targeting a single antigen may not be sufficient, and relapse due to the emergence of antigen negative leukemic cells may occur. A potential strategy to counter the outgrowth of antigen escape variants is to broaden the specificity of the CAR by incorporation of multiple antigen recognition domains in tandem. As a proof of concept, we here describe a bispecific CAR in which the single chain variable fragment (scFv) is replaced by a tandem of two single-antibody domains or nanobodies (nanoCAR). High membrane nanoCAR expression levels are observed in retrovirally transduced T cells. NanoCARs specific for CD20 and HER2 induce T cell activation, cytokine production and tumor lysis upon incubation with transgenic Jurkat cells expressing either antigen or both antigens simultaneously. The use of nanobody technology allows for the production of compact CARs with dual specificity and predefined affinity.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Determination of the binding affinity of an anti-CD34 single-chain antibody using a novel, flow cytometry based assay [J].
Benedict, CA ;
MacKrell, AJ ;
Anderson, WF .
JOURNAL OF IMMUNOLOGICAL METHODS, 1997, 201 (02) :223-231
[2]   Large double copy vectors are functional but show a size-dependent decline in transduction efficiency [J].
Bos, Tomas J. ;
De Bruyne, Elke ;
Van Lint, Sandra ;
Heirman, Carlo ;
Vanderkerken, Karin .
JOURNAL OF BIOTECHNOLOGY, 2010, 150 (01) :37-40
[3]   From the bench to the bedside: ways to improve rituximab efficacy [J].
Cartron, G ;
Watier, H ;
Golay, J ;
Solal-Celigny, P .
BLOOD, 2004, 104 (09) :2635-2642
[4]   Initiation of T cell signaling by CD45 segregation at 'close contacts' [J].
Chang, Veronica T. ;
Fernandes, Ricardo A. ;
Ganzinger, Kristina A. ;
Lee, Steven F. ;
Siebold, Christian ;
McColl, James ;
Jonsson, Peter ;
Palayret, Matthieu ;
Harlos, Karl ;
Coles, Charlotte H. ;
Jones, E. Yvonne ;
Lui, Yuan ;
Huang, Elizabeth ;
Gilbert, Robert J. C. ;
Klenerman, David ;
Aricescu, A. Radu ;
Davis, Simon J. .
NATURE IMMUNOLOGY, 2016, 17 (05) :574-+
[5]   Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs [J].
Conrath, KE ;
Lauwereys, M ;
Wyns, L ;
Muyldermans, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :7346-7350
[6]   The kinetic-segregation model: TCR triggering and beyond [J].
Davis, Simon J. ;
van der Merwe, P. Anton .
NATURE IMMUNOLOGY, 2006, 7 (08) :803-809
[7]  
Flavell DJ, 1997, CANCER RES, V57, P4824
[8]  
Fleischmann RM, 2012, ARTHRITIS RHEUM-US, V64, pS563
[9]   Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy [J].
Gardner, Rebecca ;
Wu, David ;
Cherian, Sindhu ;
Fang, Min ;
Hanafi, Laila-Aicha ;
Finney, Olivia ;
Smithers, Hannah ;
Jensen, Michael C. ;
Riddell, Stanley R. ;
Maloney, David G. ;
Turtle, Cameron J. .
BLOOD, 2016, 127 (20) :2406-2410
[10]  
GHETIE MA, 1992, BLOOD, V80, P2315