Indecomposable modules over pure semisimple hereditary rings

被引:8
作者
Nguyen Viet Dung [1 ]
Luis Garcia, Jose [2 ]
机构
[1] Ohio Univ Zanesville, Dept Math, Zanesville, OH 43701 USA
[2] Univ Murcia, Dept Math, E-30100 Murcia, Spain
关键词
Pure semisimple ring; Finite representation type; Left almost split morphism; Endofinite module; FINITE REPRESENTATION TYPE; ARTIN-ALGEBRAS; CATEGORIES; EXTENSIONS; CONJECTURE; DUALITY;
D O I
10.1016/j.jalgebra.2012.09.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If R is a hereditary left artinian ring, then R is left pure semisimple if and only if the family R-ind of all finitely generated indecomposable left R-modules has a (unique) Ext-injective partition R-ind = boolean OR U-alpha <=delta(alpha) . This partition is used to give a complete description of the distribution of all indecomposable modules over a left pure semisimple hereditary indecomposable ring R of infinite representation type. More precisely, R-ind is the disjoint union of the countable set of all preinjective modules and the finite set of all preprojective modules, and countable sets of Auslander-Reiten components of the form boolean OR U-k<w(alpha+k). for all limit ordinals alpha, constructed from the Ext-injective partition of R-ind. In particular, we show that an indecomposable left R-module M is not the source of a left almost split morphism in R-mod if and only if M belongs to U-alpha, where alpha is an infinite limit ordinal; and the direct sum of modules in U-alpha is not endofinite for each infinite limit ordinal alpha. Moreover, the endomorphism ring of each indecomposable left R-module is a division ring. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:577 / 595
页数:19
相关论文
共 50 条
[1]  
ANDERSON F., 1992, Rings and Categories of Modules
[2]   Auslander-Reiten components over pure-semisimple hereditary rings [J].
Angeleri Hugel, Lidia ;
Herbera, Dolors .
JOURNAL OF ALGEBRA, 2011, 331 (01) :285-303
[3]  
Assem I., 2006, Elements of Representation Theory of Associative Algebras: Volume 1: Techniques of Representation Theory, V1
[4]   PREPROJECTIVE MODULES OVER ARTIN ALGEBRAS [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1980, 66 (01) :61-122
[5]  
Auslander M., 1969, MEM AM MATH SOC, V94
[6]  
AUSLANDER M., 1978, Lecture Notes in Pure Appl. Math., V37, P1
[7]  
Auslander M., 1976, ALGEBRA TOPOLOGY CAT, P3
[8]  
Auslander M., 1974, Commun. Algebra, V1, P177
[9]  
Auslander M., 1995, Cambridge Studies in Advanced Mathematics, V36
[10]   Pure semisimple finitely accessible categories and Herzog's criterion [J].
Carceles, A. I. ;
Garcia, J. L. .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (06) :1001-1025