Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method

被引:192
作者
Samsonov, Sergey [1 ,2 ]
d'Oreye, Nicolas [2 ,3 ]
Smets, Benoit [2 ]
机构
[1] Nat Resources Canada, Ottawa, ON K1A 0Y7, Canada
[2] European Ctr Geodynam & Seismol, L-7256 Walferdange, Luxembourg
[3] Natl Museum Nat Hist, Dept Geophys Astrophys, L-7256 Walferdange, Luxembourg
来源
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION | 2013年 / 23卷
关键词
Synthetic Aperture Radar Interferometry; InSAR; SBAS; Time series analysis; Ground deformation; Ground subsidence; Greater Region of Luxembourg; Saarland; Lorraine; Mining and post-mining ground deformation; RADAR INTERFEROMETRY; SURFACE DEFORMATION; SAR INTERFEROMETRY; GPS;
D O I
10.1016/j.jag.2012.12.008
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
We present a novel methodology for integration of multiple InSAR data sets for computation of two dimensional time series of ground deformation. The proposed approach allows combination of SAR data acquired with different acquisition parameters, temporal and spatial sampling and resolution, wavelength and polarization. Produced time series have combined coverage, improved temporal resolution and lower noise level. We apply this methodology for mapping coal mining related ground subsidence and uplift in the Greater Region of Luxembourg along the French-German border. For this we processed 167 Synthetic Aperture Radar ERS-1/2 and ENVISAT images acquired between 1995 and 2009 from one ascending (track 29) and one descending (track 337) tracks and created over five hundred interferograms that were used for time series analysis. Derived vertical and east-west linear deformation rates show with remarkable precision a region of localized ground deformation located above and caused by mining and post-mining activities. Time series of ground deformation display temporal variability: reversal from subsidence to uplift and acceleration of subsidence in the vertical component, and horizontal motion toward the center of the subsidence on the east-west component. InSAR results are validated by leveling measurements collected by the French Geological Survey (BRGM) during 2006-2008. We determined that deformation rate changes are mainly caused by water level variations in the mines. Due to higher temporal and spatial resolution the proposed space-borne method detected a larger number of subsidence and uplift areas in comparison to leveling measurements restricted to annual monitoring of benchmark points along roads. We also identified one deformation region that is not precisely located above the mining sites. Comparison of InSAR measurements with the water levels measured in the mining pits suggest that part of the water that filled the galleries after termination of the dewatering systems may come from this region. Providing that enough SAR data is available, this method opens new opportunities for detecting and locating man-made and natural ground deformation signals with high temporal resolution and precision. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 42 条
[1]  
[Anonymous], ESA
[2]  
[Anonymous], P FRING 2003 WORKSH
[3]   Oblique slip on the Puysegur subduction interface in the 2009 July MW 7.8 Dusky Sound earthquake from GPS and InSAR observations: implications for the tectonics of southwestern New Zealand [J].
Beavan, J. ;
Samsonov, S. ;
Denys, P. ;
Sutherland, R. ;
Palmer, N. ;
Denham, M. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 183 (03) :1265-1286
[4]   A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms [J].
Berardino, P ;
Fornaro, G ;
Lanari, R ;
Sansosti, E .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (11) :2375-2383
[5]  
Blachowski J., 2009, ACTA GEODYN GEOMATER, V6
[6]  
BRGM, 2009, BASS HOUILL LORR SUR
[7]   Interaction between permafrost and infrastructure along the Qinghai-Tibet Railway detected via jointly analysis of C- and L-band small baseline SAR interferometry [J].
Chen, Fulong ;
Lin, Hui ;
Li, Zhen ;
Chen, Quan ;
Zhou, Jianmin .
REMOTE SENSING OF ENVIRONMENT, 2012, 123 :532-540
[8]   A novel phase unwrapping method based on network programming [J].
Costantini, M .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1998, 36 (03) :813-821
[9]  
Didier C, 2008, Mine closure and post-mining management international state-of-the-art international commission on mine closure international society for rock mechanics
[10]  
DREAL, 2008, PREV RISQ MES NIV RA