Classical and quantum routes to linear magnetoresistance

被引:277
作者
Hu, Jingshi [1 ]
Rosenbaum, T. F.
机构
[1] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
关键词
D O I
10.1038/nmat2259
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hallmark of materials science is the ability to tailor the microstructure of a given material to provide a desired response. Carbon mixed with iron provides the steel of buildings and bridges; impurities sprinkled in silicon single crystals form the raw materials of the electronics revolution; pinning centres in superconductors let them become powerful magnets. Here, we show that either adding a few parts per million of the proper chemical impurities to indium antimonide, a well-known semiconductor, or redesigning the material's structure on the micrometre scale, can transform its response to an applied magnetic field. The former approach is purely quantum mechanical(1-3); the latter a classical outgrowth of disorder(4-7), turned to advantage. In both cases, the magnetoresistive response-at the heart of magnetic sensor technology-can be converted to a simple, large and linear function of field that does not saturate. Harnessing the effects of disorder has the further advantage of extending the useful applications range of such a magnetic sensor to very high temperatures by circumventing the usual limitations imposed by phonon scattering.
引用
收藏
页码:697 / 700
页数:4
相关论文
共 30 条
[1]  
ABRIKOSOV AA, 1969, SOV PHYS JETP-USSR, V29, P746
[2]   Quantum magnetoresistance [J].
Abrikosov, AA .
PHYSICAL REVIEW B, 1998, 58 (05) :2788-2794
[3]   Quantum linear magnetoresistance [J].
Abrikosov, AA .
EUROPHYSICS LETTERS, 2000, 49 (06) :789-793
[4]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[5]   ENHANCED MAGNETORESISTANCE IN LAYERED MAGNETIC-STRUCTURES WITH ANTIFERROMAGNETIC INTERLAYER EXCHANGE [J].
BINASCH, G ;
GRUNBERG, P ;
SAURENBACH, F ;
ZINN, W .
PHYSICAL REVIEW B, 1989, 39 (07) :4828-4830
[6]   ELECTRICAL AND OPTICAL PROPERTIES OF INTERMETALLIC COMPOUNDS .1. INDIUM ANTIMONIDE [J].
BRECKENRIDGE, RG ;
BLUNT, RF ;
HOSLER, WR ;
FREDERISKE, HPR ;
BECKER, JH ;
OSHINSKY, W .
PHYSICAL REVIEW, 1954, 96 (03) :571-575
[7]   Random resistor network model of minimal conductivity in graphene [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir I. ;
Altshuler, Boris L. ;
Aleiner, Igor L. .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[8]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255
[9]   GALVANOMAGNETIC EFFECTS IN N-TYPE INDIUM ANTIMONIDE [J].
FREDERIKSE, HPR ;
HOSLER, WR .
PHYSICAL REVIEW, 1957, 108 (05) :1136-1145
[10]   ELECTRICAL PROPERTIES OF P-TYPE INDIUM ANTIMONIDE AT LOW TEMPERATURES [J].
FRITZSCHE, H ;
LARKHOROVITZ, K .
PHYSICAL REVIEW, 1955, 99 (02) :400-405