Dispersion laws of the two-dimensional cavity magnetoexciton-polaritons

被引:2
作者
Moskalenko, Sveatoslav A. [1 ]
Podlesny, Igor V. [1 ]
Dumanov, Evgheni V. [1 ]
Liberman, Michael A. [2 ,3 ]
Novikov, Boris V. [4 ]
机构
[1] Moldavian Acad Sci, Inst Appl Phys, Acad St 5, Kishinev 2028, Moldova
[2] KTH, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[3] Stockholm Univ, Nordic Inst Theoret Phys, Roslagstullsbacken 23, S-10691 Stockholm, Sweden
[4] St Petersburg State Univ, Inst Phys, Dept Solid State Phys, 1 Ulyanovskaya St, St Petersburg 198504, Russia
关键词
polariton; magnetoexciton; Hopfield coefficients; Rashba spin-orbit coupling; SHAKE-UP PROCESSES; LANDAU QUANTIZATION; EXCITON-POLARITONS; HEAVY-HOLE; ELECTRON; GYROTROPY; GAS;
D O I
10.1117/1.JNP.10.036006
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The energy spectrum of the two-dimensional cavity magnetoexciton-polaritons has been investigated previously, using exact solutions for the Landau quantization (LQ) of conduction electrons and heavy holes (hhs) provided by the Rashba method. Two lowest LQ levels for electrons and three lowest Landau levels for hhs lead to the construction of the six lowest magnetoexciton sates. They consist of two dipole-active, two quadrupole-active, and the two forbidden quantum transitions from the ground state of the crystal to the magnetoexciton states. The interaction of the four optical-active magnetoexciton states with the cavity-mode photons with a given circular polarization and with well-defined incidence direction leads to the creation of five magnetoexciton-polariton branches. The fifth-order dispersion equation is examined by using numerical calculations and the second-order dispersion equation is solved analytically, taking into account only one dipole-active magnetoexciton state in the point of the in-plane wave vector (k) over right arrow || = 0. The effective polariton mass on the lower polariton branch, the Rabi frequency, and the corresponding Hopfield coefficients are determined in dependence on the magnetic-field strength, the Rashba spin-orbit coupling parameters, and the electron and hole g-factors. (C) 2016 Society of Photo-Optical Instrumentation Engineers (SPIE).
引用
收藏
页数:19
相关论文
共 50 条
[21]   On the confinement of a Dirac particle to a two-dimensional ring [J].
Bakke, K. ;
Furtado, C. .
PHYSICS LETTERS A, 2012, 376 (15) :1269-1273
[22]   Statistical properties of ideal photons in a two-dimensional dye-filled spherical cap cavity [J].
Cheng, Ze .
CHINESE PHYSICS B, 2024, 33 (10)
[23]   Exchange effect and magneto-plasmon mode dispersion in an anisotropic two-dimensional electronic system [J].
Wu, Xiaoguang .
CHINESE PHYSICS B, 2016, 25 (11)
[24]   Landau quantization of a two-dimensional electron with the nonparabolic dispersion law, pseudospin components and chirality terms [J].
Moskalenko, S. A. ;
Podlesny, I. V. ;
Khadzhi, P. I. ;
Novikov, B. V. ;
Kiselyov, A. A. .
SOLID STATE COMMUNICATIONS, 2011, 151 (22) :1690-1695
[25]   Unbound-to-bound transition of two-atom polaritons in an optical cavity [J].
Sun, Qing ;
Hu, Jie ;
Wen, Lin ;
Pu, Han ;
Ji, An-Chun .
PHYSICAL REVIEW A, 2018, 98 (03)
[26]   Strong Spin-Orbit Contribution to the Hall Coefficient of Two-Dimensional Hole Systems [J].
Liu, Hong ;
Marcellina, E. ;
Hamilton, A. R. ;
Culcer, Dimitrie .
PHYSICAL REVIEW LETTERS, 2018, 121 (08)
[27]   On the Two-Dimensional Hydrogen Molecule [J].
Skobelev, V. V. ;
Krasin, V. P. ;
Soyustova, S. I. .
RUSSIAN PHYSICS JOURNAL, 2020, 62 (12) :2180-2186
[28]   Macroscopic Two-Dimensional Polariton Condensates [J].
Ballarini, Dario ;
Caputo, Davide ;
Munoz, Carlos Sanchez ;
De Giorgi, Milena ;
Dominici, Lorenzo ;
Szymanska, Marzena H. ;
West, Kenneth ;
Pfeiffer, Loren N. ;
Gigli, Giuseppe ;
Laussy, Fabrice P. ;
Sanvitto, Daniele .
PHYSICAL REVIEW LETTERS, 2017, 118 (21)
[29]   The Computational Design of Two-Dimensional Materials [J].
Miller, Daniel P. ;
Phillips, Adam ;
Ludowieg, Herbert ;
Swihart, Sarah ;
Autschbach, Jochen ;
Zurek, Eva .
JOURNAL OF CHEMICAL EDUCATION, 2019, 96 (10) :2308-2314
[30]   Magnetoexcitons in two-dimensional electronic systems [J].
Bisti, V. E. ;
Van'kov, A. B. ;
Zhuravlev, A. S. ;
Kulik, L. V. .
PHYSICS-USPEKHI, 2015, 58 (04) :315-329