Selecting the best linear mixed model under REML

被引:127
作者
Gurka, MJ [1 ]
机构
[1] Univ Virginia, Sch Med, Div Biostat & Epidemiol, Dept Publ Hlth Sci, Charlottesville, VA 22908 USA
关键词
information criteria; longitudinal data; model selection; random effects; restricted likelihood;
D O I
10.1198/000313006X90396
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Restricted maximum likelihood (REML) estimation of the parameters of the mixed model has become commonplace, even becoming the default option in many statistical software packages. However, a review of the literature indicates a need to update and clarify model selection techniques under REML, as ambiguities exist on the appropriateness of existing information criteria in this setting. A simulation study as well as an application assisted in gaining an understanding of the performance of information criteria in selecting the best model when using REML estimation.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 15 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Burnham K. P., 2002, MODEL SELECTION MULT
[4]   BAYESIAN INFERENCE FOR VARIANCE COMPONENTS USING ONLY ERROR CONTRASTS [J].
HARVILLE, DA .
BIOMETRIKA, 1974, 61 (02) :383-385
[5]  
HURVICH CM, 1989, BIOMETRIKA, V76, P297, DOI 10.2307/2336663
[6]   BAYES FACTORS [J].
KASS, RE ;
RAFTERY, AE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :773-795
[7]  
*MATHS INC, 2002, S PLUS REL 6
[8]  
Molenberghs Geert., 2000, Linear Mixed Models for Longitudinal Data
[9]   Regression and time series model selection using variants of the Schwarz information criterion [J].
Neath, AA ;
Cavanaugh, JE .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (03) :559-580
[10]  
*SAS I INC, 2003, SAS REL 9 1