c*-Quasinormally embedded subgroups of finite groups

被引:1
作者
Li, Changwen [1 ]
Huang, Jianhong [1 ]
Hu, Bin [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math Sci, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
c*-Quasinormally embedded subgroup; p-nilpotent; supersolvable; Sylow subgroup; SUPPLEMENTED SUBGROUPS; MINIMAL SUBGROUPS; P-NILPOTENCY; NORMALITY;
D O I
10.1007/s11464-012-0212-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose that G is a finite group and H is a subgroup of G. H is said to be s-quasinormally embedded in G if for each prime p dividing |H|, a Sylow p-subgroup of H is also a Sylow p-subgroup of some s-quasinormal subgroup of G; H is called c*-quasinormally embedded in G if there is a subgroup T of G such that G = HT and H boolean AND T is s-quasinormally embedded in G. We investigate the influence of c*-quasinormally embedded subgroups on the structure of finite groups. Some recent results are generalized.
引用
收藏
页码:703 / 716
页数:14
相关论文
共 33 条
[1]  
Asaad M, 1996, COMMUN ALGEBRA, V24, P2771
[2]   On S-quasinormally embedded subgroups of finite groups [J].
Asaad, M ;
Heliel, AA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 165 (02) :129-135
[3]   Finite groups with some C-normal minimal subgroups [J].
Ballester-Bolinches, A ;
Wang, YM .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (02) :121-127
[4]   C-supplemented subgroups of finite groups [J].
Ballester-Bolinches, A ;
Wang, YM ;
Guo, XY .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :383-389
[5]   Sufficient conditions for supersolubility of finite groups [J].
Ballester-Bolinches, A ;
Pedraza-Aguilera, MC .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 127 (02) :113-118
[6]   Finite groups with some ss-quasinormal and c-normal subgroups [J].
Chao, Fang ;
Guo, Xiuyun .
FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (02) :211-219
[7]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
[8]   G-covering subgroup systems for the classes of supersoluble and nilpotent groups [J].
Guo, WB ;
Shum, KP ;
Skiba, A .
ISRAEL JOURNAL OF MATHEMATICS, 2003, 138 (1) :125-138
[9]  
Guo WB, 2000, THEORY CLASSES GROUP
[10]   Some open questions in the theory of generalized permutable subgroups [J].
Guo WenBin ;
Xie FengYan ;
Li BaoJun .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10) :2132-2144