Poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly-(L-lactic acid) (PLA) have attracted much interest in recent years since they are biodegradable, thus can replace synthetic non-degradable materials. In this study, improvements of PHBV, mechanical, phase inversions, and rheological properties were investigated after blending with PLA in varying ratio's. Three different blends of commercially available PLAs with 92-98% L-Iactide units and one grade of PHB with 5% valerate content were blended using a micro-compounder at 175 degrees C. The composition of PHBV in blends ranged from 50% to 80%. With the addition of PLA, increases in the flexural strength and elastic modulus were observed for several blends, while minor to no changes were detected in the elongation at break and tensile strength as compared to pure PHBV material. Like many conventional plastics, the complex viscosity decreased with increasing rotational frequency due to decreasing entanglements and molecular weight. The complex viscosity with respect to time was very stable for the blends, but no improvements in the PHBV viscosity were observed with the addition of PLA at 170 degrees C. Three phase inversion models were used to predict the continuity of the blends, and the results showed both dual- and PLA-continuity phase for the blends. In summary, the mechanical results showed improvements in the tensile and flexural properties, while the rheological observation showed minor improvements in the complex viscosity for numerous concentrations. (C) 2013 Elsevier Ltd. All rights reserved.