Multiplicity of Homoclinic Solutions for Fractional Hamiltonian Systems with Subquadratic Potential

被引:11
作者
Nyamoradi, Neamat [1 ]
Alsaedi, Ahmed [2 ]
Ahmad, Bashir [2 ]
Zhou, Yong [2 ,3 ]
机构
[1] Razi Univ, Dept Math, Fac Sci, Kermanshah 67149, Iran
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
homoclinic solutions; fractional Hamiltonian systems; critical point theory; VARIATIONAL APPROACH; EXISTENCE; ORBITS; DIFFUSION; ENTROPY; TSALLIS;
D O I
10.3390/e19020050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the existence of homoclinic solutions for the fractional Hamiltonian systems with left and right Liouville-Weyl derivatives. We establish some new results concerning the existence and multiplicity of homoclinic solutions for the given system by using Clark's theorem from critical point theory and fountain theorem.
引用
收藏
页数:24
相关论文
共 43 条
[41]   Variational approach to solutions for a class of fractional Hamiltonian systems [J].
Zhang, Ziheng ;
Yuan, Rong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (13) :1873-1883
[42]   Existence and multiplicity results of homoclinic solutions for fractional Hamiltonian systems [J].
Zhou, Yong ;
Zhang, Lu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (06) :1325-1345
[43]   A novel efficient β-glucanase from a paddy soil microbial metagenome with versatile activities [J].
Zhou, Yu ;
Wang, Xu ;
Wei, Wei ;
Xu, Jimin ;
Wang, Wei ;
Xie, Zhongwen ;
Zhang, Zhengzhu ;
Jiang, Hongchen ;
Wang, Qi ;
Wei, Chaoling .
BIOTECHNOLOGY FOR BIOFUELS, 2016, 9