Multiplicity of Homoclinic Solutions for Fractional Hamiltonian Systems with Subquadratic Potential

被引:11
作者
Nyamoradi, Neamat [1 ]
Alsaedi, Ahmed [2 ]
Ahmad, Bashir [2 ]
Zhou, Yong [2 ,3 ]
机构
[1] Razi Univ, Dept Math, Fac Sci, Kermanshah 67149, Iran
[2] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Fac Sci, Jeddah 21589, Saudi Arabia
[3] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
homoclinic solutions; fractional Hamiltonian systems; critical point theory; VARIATIONAL APPROACH; EXISTENCE; ORBITS; DIFFUSION; ENTROPY; TSALLIS;
D O I
10.3390/e19020050
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the existence of homoclinic solutions for the fractional Hamiltonian systems with left and right Liouville-Weyl derivatives. We establish some new results concerning the existence and multiplicity of homoclinic solutions for the given system by using Clark's theorem from critical point theory and fountain theorem.
引用
收藏
页数:24
相关论文
共 43 条
[1]  
[Anonymous], 1994, COMM APPL NONLINEAR
[2]   INFINITELY MANY SOLUTIONS OF A SYMMETRICAL DIRICHLET PROBLEM [J].
BARTSCH, T .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (10) :1205-1216
[3]   Multibump homoclinic solutions to a centre equilibrium in a class of autonomous Hamiltonian systems [J].
Bolle, P ;
Buffoni, B .
NONLINEARITY, 1999, 12 (06) :1699-1716
[5]   Entropy solution theory for fractional degenerate convection-diffusion equations [J].
Cifani, Simone ;
Jakobsen, Espen R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :413-441
[6]  
Coti Zelati V., 1991, J. Am. Math. Soc., V4, P693, DOI 10.1090/S0894-0347-1991-1119200-3
[8]  
Dipierro S., 2014, ARXIV14043652
[9]   Chaotic Orbits for Systems of Nonlocal Equations [J].
Dipierro, Serena ;
Patrizi, Stefania ;
Valdinoci, Enrico .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 349 (02) :583-626
[10]   Dislocation Dynamics in Crystals: A Macroscopic Theory in a Fractional Laplace Setting [J].
Dipierro, Serena ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (02) :1061-1105