Automated online measurement of N2, N2O, NO, CO2, and CH4 emissions based on a gas-flow-soil-core technique

被引:9
|
作者
Liao, Tingting [1 ,3 ]
Wang, Rui [1 ]
Zheng, Xunhua [1 ]
Sun, Yang [1 ]
Butterbach-Bahl, Klaus [2 ]
Chen, Nuo [1 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[2] Karlsruhe Inst Technol, Inst Meteorol & Climate Res IMK IFU, D-82467 Garmisch Partenkirchen, Germany
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Denitrification; Soil emission rates of carbon and nitrogenous gases; Gas-flow-soil-core (GFSC) technique; Dinitrogen (N-2) and nitric oxide (NO) analysis; Automatic measurement; NITROUS-OXIDE; DENITRIFICATION; REDUCTION;
D O I
10.1016/j.chemosphere.2013.07.001
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The gas-flow-soil-core (GFSC) technique allows to directly measure emission rates of denitrification gases of incubated soil cores. However, the technique was still suffering some drawbacks such as inadequate accuracy due to asynchronous detection of dinitrogen (N-2) and other gases and low measurement frequency. Furthermore, its application was limited due to intensive manual operation. To overcome these drawbacks, we updated the GFSC system as described by Wang et al. (2011) by (a) using both a chemiluminescent detector and a gas chromatograph detector to measure nitric oxide (NO), (b) synchronizing the measurements of N-2, NO, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), and (c) fully automating the sampling/analysis of all the gases. These technical modifications significantly reduced labor demands by at least a factor of two, increased the measurement frequency from 3 to 6 times per day and resulted in remarkable improvements in measurement accuracy (with detection limits of 0.5, 0.01, 0.05, 2.3 and 0.2 mu g N or C h(-1) kg(-1) ds, or 17, 0.3, 1.8, 82, and 6 mu g N or C m(-2) h(-1), for N-2, N2O, NO, CO2, and CH4, respectively). In some circumstances, the modified system measured significantly more N-2 and CO2 and less N2O and NO because of the enhanced measurement frequency. The modified system distinguished the differences in emissions of the denitrification gases and CO2 due to a 20% change in initial carbon supplies. It also remarkably recovered approximately 90% of consumed nitrate during incubation. These performances validate the technical improvement, and indicate that the improved GFSC system may provide a powerful research tool for obtaining deeper insights into the processes of soil carbon and nitrogen transformation during denitrification. (C) 2013 Published by Elsevier Ltd.
引用
收藏
页码:2848 / 2853
页数:6
相关论文
共 50 条
  • [1] Measurement of N2, N2O, NO, and CO2 Emissions from Soil with the Gas-Row-Soil-Core Technique
    Wang, Rui
    Willibald, Georg
    Feng, Qi
    Zheng, Xunhua
    Liao, Tingting
    Brueggemann, Nicolas
    Butterbach-Bahl, Klaus
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (14) : 6066 - 6072
  • [2] Emissions of CO2, CH4 and N2O from Southern European peatlands
    Danevcic, Tjasa
    Mandic-Mulec, Ines
    Stres, Blaz
    Stopar, David
    Hacin, Janez
    SOIL BIOLOGY & BIOCHEMISTRY, 2010, 42 (09) : 1437 - 1446
  • [3] Emissions of CH4, CO2, and N2O from soil at a cattle overwintering area as affected by available C and N
    Simek, Miloslav
    Hynst, Jaroslav
    Simek, Pavel
    APPLIED SOIL ECOLOGY, 2014, 75 : 52 - 62
  • [4] Quantification of N and C cycling during aerobic composting, including automated directmeasurement of N2, N2O, NO, NH3, CO2 and CH4 emissions
    Cao, Yubo
    Wang, Xuan
    Misselbrook, Tom
    Wang, Rui
    Zheng, Xunhua
    Ma, Lin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 857
  • [5] Seasonal and spatial variations of greenhouse gas (CO2, CH4 and N2O) emissions from urban ponds in Brussels
    Bauduin, T.
    Gypens, N.
    Borges, A. V.
    WATER RESEARCH, 2024, 253
  • [6] Effect of simulated acid rain on soil CO2, CH4 and N2O emissions and microbial communities in an agricultural soil
    Liu, Ziqiang
    Li, Dengfeng
    Zhang, Jiaen
    Saleem, Muhammad
    Zhang, Yan
    Ma, Rui
    He, Yanan
    Yang, Jiayue
    Xiang, Huimin
    Wei, Hui
    GEODERMA, 2020, 366
  • [7] A potential of iron slag-based soil amendment as a suppressor of greenhouse gas (CH4 and N2O) emissions in rice paddy
    Galgo, Snowie Jane C.
    Canatoy, Ronley C.
    Lim, Ji Yeon
    Park, Hyon Chol
    Kim, Pil Joo
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 12
  • [8] Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems?
    Sanz-Cobena, A.
    Garcia-Marco, S.
    Quemada, M.
    Gabriel, J. L.
    Almendros, Patricia
    Vallejo, A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 466 : 164 - 174
  • [9] N2O, CH4, and CO2 Emissions from Continuous Flooded, Wet, and Flooded Converted to Wet Soils
    Khalid, Muhammad Salman
    Shaaban, Muhammad
    Hu, Ronggui
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2019, 19 (02) : 342 - 351
  • [10] CH4 and N2O emissions embodied in international trade of meat
    Caro, Dario
    LoPresti, Anna
    Davis, Steven J.
    Bastianoni, Simone
    Caldeira, Ken
    ENVIRONMENTAL RESEARCH LETTERS, 2014, 9 (11):