Shrinking the period length of quasi-periodic continued fractions

被引:3
作者
Komatsu, Takao [1 ]
机构
[1] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
关键词
CONVERGENTS;
D O I
10.1016/j.jnt.2008.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Extending the work of Burger et al., here we show that every quasi-periodic simple continued fraction alpha can be transformed into a quasi-periodic non-simple continued fraction having period length one. Moreover, a certain kind of quasi-periodic non-simple continued fraction is equivalent to a quasi-periodic N-continued fraction. The results of this paper follow from arguments of Burger et al. but we apply our version to offer new continued fractions for certain classes of real numbers. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:358 / 366
页数:9
相关论文
共 12 条
[1]  
BURGER E, 2000, STUD MATH LIB, V8
[2]   Shrinking the period lengths of continued fractions while still capturing convergents [J].
Burger, Edward B. ;
Gell-Redirian, Jesse ;
Kravitz, Ross ;
Walton, Daniel ;
Yates, Nicholas .
JOURNAL OF NUMBER THEORY, 2008, 128 (01) :144-153
[3]  
ELSNER C, 1999, C MATH, V79, P133
[4]  
HURWITZ A, 1963, MATH WERKE, V2, P276
[5]  
JONES WB, 1980, ENCY MATH APPL, V11
[6]  
Khovanskii A, 1963, The Application of Continued Fractions and their Generalizations to Problems in Approximation Theory
[7]  
Komatsu T., 2007, COMBINATORIAL NUMBER, P315
[8]  
KOMATSU T, APPL FIBONACCI UNPUB
[9]  
KOMATSU T, 2004, TOKYO J MATH, V27, P1
[10]  
KOMATSU T, 2003, JP J ALGEBRA NUMBER, V3, P447