STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

被引:279
作者
Yang, Jun [1 ]
Cowan, Nicolas B. [2 ,3 ]
Abbot, Dorian S. [1 ]
机构
[1] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
[2] Northwestern Univ, CIERA, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
关键词
astrobiology; planets and satellites: atmospheres; stars: low-mass; THERMAL PHASE CURVES; EARTH-LIKE PLANETS; TERRESTRIAL PLANETS; WATER ICE; ATMOSPHERES; EXOPLANETS; MODEL; STARS;
D O I
10.1088/2041-8205/771/2/L45
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies. This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.
引用
收藏
页数:6
相关论文
共 41 条
  • [1] Clouds and Snowball Earth deglaciation
    Abbot, Dorian S.
    Voigt, Aiko
    Branson, Mark
    Pierrehumbert, Raymond T.
    Pollard, David
    Le Hir, Guillaume
    Koll, Daniel D. B.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [2] INDICATION OF INSENSITIVITY OF PLANETARY WEATHERING BEHAVIOR AND HABITABLE ZONE TO SURFACE LAND FRACTION
    Abbot, Dorian S.
    Cowan, Nicolas B.
    Ciesla, Fred J.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 756 (02)
  • [3] Bonfils X., 2013, ARXIV 1306 0904
  • [4] Charbonneau D., 2007, ARXIV 0706 1047
  • [5] Collins W. D., 2004, DESCRIPTION OF THE N
  • [6] The Community Climate System Model version 3 (CCSM3)
    Collins, William D.
    Bitz, Cecilia M.
    Blackmon, Maurice L.
    Bonan, Gordon B.
    Bretherton, Christopher S.
    Carton, James A.
    Chang, Ping
    Doney, Scott C.
    Hack, James J.
    Henderson, Thomas B.
    Kiehl, Jeffrey T.
    Large, William G.
    McKenna, Daniel S.
    Santer, Benjamin D.
    Smith, Richard D.
    [J]. JOURNAL OF CLIMATE, 2006, 19 (11) : 2122 - 2143
  • [7] THERMAL PHASES OF EARTH-LIKE PLANETS: ESTIMATING THERMAL INERTIA FROM ECCENTRICITY, OBLIQUITY, AND DIURNAL FORCING
    Cowan, Nicolas B.
    Voigt, Aiko
    Abbot, Dorian S.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 757 (01)
  • [8] THERMAL PHASE VARIATIONS OF WASP-12b: DEFYING PREDICTIONS
    Cowan, Nicolas B.
    Machalek, Pavel
    Croll, Bryce
    Shekhtman, Louis M.
    Burrows, Adam
    Deming, Drake
    Greene, Tom
    Hora, Joseph L.
    [J]. ASTROPHYSICAL JOURNAL, 2012, 747 (01)
  • [9] A NEW24 μm PHASE CURVE FOR υ ANDROMEDAE b
    Crossfield, Ian J. M.
    Hansen, Brad M. S.
    Harrington, Joseph
    Cho, James Y. -K.
    Deming, Drake
    Menou, Kristen
    Seager, Sara
    [J]. ASTROPHYSICAL JOURNAL, 2010, 723 (02) : 1436 - 1446
  • [10] Atmospheric circulations of terrestrial planets orbiting low-mass stars
    Edson, Adam
    Lee, Sukyoung
    Bannon, Peter
    Kasting, James F.
    Pollard, David
    [J]. ICARUS, 2011, 212 (01) : 1 - 13