On the prediction of fractional Brownian motion

被引:126
|
作者
Gripenberg, G [1 ]
Norros, I [1 ]
机构
[1] VTT INFORMAT TECHNOL TELECOMMUN,VTT 02044,FINLAND
关键词
fractional Brownian motion; prediction; stochastic integration;
D O I
10.2307/3215063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integration with respect to the fractional Brownian motion Z with Hurst parameter H is an element of (1/2, 1) is discussed. The predictor E [Z(u)\Z(s), s is an element of (-T, 0)] is represented as an integral with respect to Z, solving a weakly singular integral equation for the prediction weight function.
引用
收藏
页码:400 / 410
页数:11
相关论文
共 50 条
  • [1] Prediction law of fractional Brownian motion
    Sottinen, Tommi
    Viitasaari, Lauri
    STATISTICS & PROBABILITY LETTERS, 2017, 129 : 155 - 166
  • [2] Prediction for some processes related to a fractional Brownian motion
    Duncan, TE
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (02) : 128 - 134
  • [3] Prediction of fractional Brownian motion-type processes
    Inoue, A.
    Anh, V. V.
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2007, 25 (03) : 641 - 666
  • [4] Is it Brownian or fractional Brownian motion?
    Li, Meiyu
    Gencay, Ramazan
    Xue, Yi
    ECONOMICS LETTERS, 2016, 145 : 52 - 55
  • [5] Transformation formulas for fractional Brownian motion
    Jost, Celine
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (10) : 1341 - 1357
  • [6] Stochastic process-based degradation modeling and RUL prediction: from Brownian motion to fractional Brownian motion
    Zhang, Hanwen
    Chen, Maoyin
    Shang, Jun
    Yang, Chunjie
    Sun, Youxian
    SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (07)
  • [7] Stochastic process-based degradation modeling and RUL prediction: from Brownian motion to fractional Brownian motion
    Hanwen Zhang
    Maoyin Chen
    Jun Shang
    Chunjie Yang
    Youxian Sun
    Science China Information Sciences, 2021, 64
  • [8] TRANSFER PRINCIPLE FOR nTH ORDER FRACTIONAL BROWNIAN MOTION WITH APPLICATIONS TO PREDICTION AND EQUIVALENCE IN LAW
    Sottinen, T.
    Viitasaari, L.
    THEORY OF PROBABILITY AND MATHEMATICAL STATISTICS, 2018, 98 : 188 - 204
  • [9] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [10] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    Complex Analysis and Operator Theory, 2012, 6 : 33 - 63