On the prediction of fractional Brownian motion

被引:127
作者
Gripenberg, G [1 ]
Norros, I [1 ]
机构
[1] VTT INFORMAT TECHNOL TELECOMMUN,VTT 02044,FINLAND
关键词
fractional Brownian motion; prediction; stochastic integration;
D O I
10.2307/3215063
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Integration with respect to the fractional Brownian motion Z with Hurst parameter H is an element of (1/2, 1) is discussed. The predictor E [Z(u)\Z(s), s is an element of (-T, 0)] is represented as an integral with respect to Z, solving a weakly singular integral equation for the prediction weight function.
引用
收藏
页码:400 / 410
页数:11
相关论文
共 10 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
Cornfeld I. P., 1982, Ergodic Theory
[3]  
Dellacherie C., 1982, Probabilities and Potential B: Theory of Martingales
[4]   LOCAL AREA NETWORK TRAFFIC CHARACTERISTICS, WITH IMPLICATIONS FOR BROAD-BAND NETWORK CONGESTION MANAGEMENT [J].
FOWLER, HJ ;
LELAND, WE .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1991, 9 (07) :1139-1149
[5]   STOCHASTIC AND MULTIPLE WIENER INTEGRALS FOR GAUSSIAN PROCESSES [J].
HUANG, ST ;
CAMBANIS, S .
ANNALS OF PROBABILITY, 1978, 6 (04) :585-614
[6]   ON THE SELF-SIMILAR NATURE OF ETHERNET TRAFFIC (EXTENDED VERSION) [J].
LELAND, WE ;
TAQQU, MS ;
WILLINGER, W ;
WILSON, DV .
IEEE-ACM TRANSACTIONS ON NETWORKING, 1994, 2 (01) :1-15
[7]   SOLUTION OF A CLASS OF SINGULAR INTEGRAL EQUATIONS [J].
LUNDGREN, T ;
CHIANG, D .
QUARTERLY OF APPLIED MATHEMATICS, 1967, 24 (04) :303-&
[8]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[9]   A STORAGE MODEL WITH SELF-SIMILAR INPUT [J].
NORROS, I .
QUEUEING SYSTEMS, 1994, 16 (3-4) :387-396
[10]  
Taqqu M. S., 1986, DEPENDENCE PROBABILI, V11