Glucose repression in Saccharomyces cerevisiae

被引:205
作者
Kayikci, Omur [1 ,2 ]
Nielsen, Jens [1 ,2 ,3 ]
机构
[1] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
[2] Chalmers Univ Technol, Novo Nordisk Fdn, Ctr Biosustainabil, SE-41296 Gothenburg, Sweden
[3] Tech Univ Denmark, Novo Nordisk Fdn, Ctr Biosustainabil, DK-2970 Horsholm, Denmark
关键词
carbon metabolism; Snf1; signaling; carbon catabolite repression; SNF1; PROTEIN-KINASE; YEAST SYSTEMS BIOLOGY; GENE-EXPRESSION; BETA-SUBUNITS; REGULATES TRANSCRIPTION; GLUCONEOGENIC ENZYMES; TRANSPORTER GENES; ADR1; PHOSPHORYLATION; CHROMATIN;
D O I
10.1093/femsyr/fov068
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression.
引用
收藏
页数:8
相关论文
共 92 条
  • [1] Snf1/AMPK regulates Gcn5 occupancy, H3 acetylation and chromatin remodelling at S-cerevisiae ADY2 promoter
    Abate, Georgia
    Bastonini, Emanuela
    Braun, Katherine A.
    Verdone, Loredana
    Young, Elton T.
    Caserta, Micaela
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (05): : 419 - 427
  • [2] Common chromatin architecture, common chromatin remodeling, and common transcription kinetics of Adr1-dependent genes in Saccharomyces cerevisiae
    Agricola, E
    Verdone, L
    Xella, B
    Di Mauro, E
    Caserta, M
    [J]. BIOCHEMISTRY, 2004, 43 (27) : 8878 - 8884
  • [3] Hxk2 regulates the phosphorylation state of Mig1 and therefore its nucleocytoplasmic distribution
    Ahuatzi, Deifilia
    Riera, Alberto
    Pelaez, Rafael
    Herrero, Pilar
    Moreno, Fernando
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (07) : 4485 - 4493
  • [4] Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1
    Amodeo, Gabriele A.
    Rudolph, Michael J.
    Tong, Liang
    [J]. NATURE, 2007, 449 (7161) : 492 - U13
  • [5] Yeast AMP-activated Protein Kinase Monitors Glucose Concentration Changes and Absolute Glucose Levels
    Bendrioua, Loubna
    Smedh, Maria
    Almquist, Joachim
    Cvijovic, Marija
    Jirstrand, Mats
    Goksor, Mattias
    Adiels, Caroline B.
    Hohmann, Stefan
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2014, 289 (18) : 12863 - 12875
  • [6] Adr1 and Cat8 Mediate Coactivator Recruitment and Chromatin Remodeling at Glucose-Regulated Genes
    Biddick, Rhiannon K.
    Law, G. Lynn
    Young, Elton T.
    [J]. PLOS ONE, 2008, 3 (01):
  • [7] Coupling mRNA Synthesis and Decay
    Braun, Katherine A.
    Young, Elton T.
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2014, 34 (22) : 4078 - 4087
  • [8] CARLSON M, 1981, GENETICS, V98, P25
  • [9] Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast
    Castermans, Dries
    Somers, Ils
    Kriel, Johan
    Louwet, Wendy
    Wera, Stefaan
    Versele, Matthias
    Janssens, Veerle
    Thevelein, Johan M.
    [J]. CELL RESEARCH, 2012, 22 (06) : 1058 - 1077
  • [10] MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN
    CELENZA, JL
    CARLSON, M
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) : 5034 - 5044