Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress

被引:83
|
作者
Kaur, Harmeet [1 ]
Bhatla, Satish C. [1 ]
机构
[1] Univ Delhi, Dept Bot, Lab Plant Physiol & Biochem, Delhi 110007, India
来源
关键词
Nitric oxide; Glutathione; Glutathione reductase; Salt stress; Melatonin; Sunflower; NITROSATED TRYPTOPHAN DERIVATIVES; OXIDATIVE STRESS; ANTIOXIDANT ENZYMES; INDUCED RELEASE; PLANT-GROWTH; IN-VIVO; TOLERANCE; SALINITY; SEROTONIN; LEAVES;
D O I
10.1016/j.niox.2016.07.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present findings demonstrate significant modulation of total glutathione content, reduced glutathione (GSH) content, oxidized glutathione (GSSG) content, GSH/GSSG ratio and glutathione reductase (GR; EC 1.6.4.2) activity in dark-grown seedling cotyledons in response to salt-stress (120 mM NaCl) in sunflower (Helianthus annuus L) seedlings. A differential spatial distribution of GR activity (monitored by confocal laser scanning microscopic (CLSM) imaging) is also evident. Melatonin and nitric oxide (NO) differentially ameliorate salt stress effect by modulating GR activity and GSH content in seedling cotyledons. Total glutathione content (GSH + GSSG) exhibit a seedling age-dependent increase in the cotyledons, more so in salt-stressed conditions and when subjected to melatonin treatment. Seedlings raised in presence of 15 mu M of melatonin exhibit significant increase in GR activity in cotyledon homogenates (10,000 g supernatant) coinciding with significant increase in GSH content. GSSG content and GSH/GSSG ratio also increased due to melatonin treatment. A correlation is thus evident in NaCl-sensitized modulation of GSH content and GR activity by melatonin. GSH content is down regulated by NO provided as 250 mu M of sodium nitroprusside (SNP) although total glutathione content remained in similar range. A reversal of response (enhanced total glutathione accumulation) by NO scavenger (cPTIO) highlights the critical role of NO in modulating glutathione homeostasis. SNP lowers the activity of hydroxyindole-O-methyltransferase (HIOMT) - a regulatory enzyme in melatonin biosynthesis in control seedlings whereas its activity is upregulated in salt-stressed seedling cotyledons. Melatonin content of seedling cotyledons is also modulated by NO. NO and melatonin thus seem to modulate GR activity and GSH content during seedling growth under salt stress. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 22 条