A characterization and equations for minimal shape-preserving projections

被引:5
作者
Chalmers, BL
Mupasiri, D
Prophet, MP [1 ]
机构
[1] Univ No Iowa, Cedar Falls, IA 50614 USA
[2] Univ Calif Riverside, Riverside, CA 92521 USA
关键词
D O I
10.1016/j.jat.2005.11.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X denote a (real) Banach space and V an n-dimensional subspace. We denote by B = B(X, V) the space of all bounded linear operators from X into V; let P(X, V) be the set of all projections in M. For a given cone S subset of X, we denote by P = P-S (X, V) the set of operators P is an element of P such that P S subset of S. When P-S not equal 0, we characterize those P is an element of P-s for which parallel to P parallel to is minimal. This characterization is then utilized in several applications and examples. (C) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:184 / 196
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1994, J OPER THEORY
[2]   THE DETERMINATION OF MINIMAL PROJECTIONS AND EXTENSIONS IN L1 [J].
CHALMERS, BL ;
METCALF, FT .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 329 (01) :289-305
[3]  
Chalmers BL, 1997, NUMER FUNC ANAL OPT, V18, P507
[4]   Symmetric spaces with maximal projection constants [J].
Chalmers, BL ;
Lewicki, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :1-22
[5]  
Chalmers BL, 1999, STUD MATH, V134, P119
[6]  
Koenig H., 1984, J FUNCT ANAL, V119, P253
[7]  
KOENIG H, 1990, T AM MATH SOC, V320, P799
[8]   Qualitative Korovkin-type results on conservative approximation [J].
Munoz-Delgado, FJ ;
Ramirez-Gonzalez, V ;
Cardenas-Morales, D .
JOURNAL OF APPROXIMATION THEORY, 1998, 94 (01) :144-159
[9]  
MUPASIRI D, IN PRESS ROCKY MOUNT
[10]  
MUPASIRI D, UNPUB NONEXISTENCE M