A new class of superregular matrices and MDP convolutional codes

被引:42
作者
Almeida, P. [1 ]
Napp, D. [2 ]
Pinto, R. [1 ]
机构
[1] Univ Aveiro, CIDMA Ctr Res & Dev Math & Applicat, Dept Math, Aveiro, Portugal
[2] Univ Jaume, Dept Math, E-12071 Castellon de La Plana, Spain
关键词
Convolutional codes; Column distances; Maximum distance profile; Superregular matrices;
D O I
10.1016/j.laa.2013.06.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the problem of constructing superregular matrices that lead to MDP convolutional codes. These matrices are a type of lower block triangular Toeplitz matrices with the property that all the square submatrices that can possibly be nonsingular due to the lower block triangular structure are nonsingular. We present a new class of matrices that are superregular over a sufficiently large finite field F. Such construction works for any given choice of characteristic of the field F and code parameters (n, k, delta) such that (n - k)vertical bar delta. We also discuss the size of F needed so that the proposed matrices are superregular. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:2145 / 2157
页数:13
相关论文
共 15 条
[1]  
AIDINYAN AK, 1986, PROBL PEREDACHI INF, V22, P106
[2]   Strongly-MDS convolutional codes [J].
Gluesing-Luerssen, H ;
Rosenthal, J ;
Smarandache, R .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :584-598
[3]  
HUNGERFORD TW, 1974, ALGEBRA
[4]   Convolutional codes with maximum distance profile [J].
Hutchinson, R ;
Rosenthal, J ;
Smarandache, R .
SYSTEMS & CONTROL LETTERS, 2005, 54 (01) :53-63
[5]   On superregular matrices and MDP convolutional codes [J].
Hutchinson, Ryan ;
Smarandache, Roxana ;
Trumpf, Jochen .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) :2585-2596
[6]   THE EXISTENCE OF STRONGLY MDS CONVOLUTIONAL CODES [J].
Hutchinson, Ryan .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (06) :2812-2826
[7]  
Johannesson R., 1999, FUNDAMENTALS CONVOLU
[8]  
MacWilliams F.J., 1977, N HOLLAND MATH LIB, V16
[9]   Convolutional Goppa codes [J].
Porras, JMM ;
Pérez, JAD ;
Curto, JII ;
Sotelo, GS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (01) :340-344
[10]   Maximum distance separable convolutional codes [J].
Rosenthal, J ;
Smarandache, R .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1999, 10 (01) :15-32