Robust wave function optimization procedures in quantum Monte Carlo methods

被引:64
作者
Bressanini, D
Morosi, G
Mella, M
机构
[1] Univ Insubria Sede Como, Dipartimento Sci Chim Fis & Matemat, I-22100 Como, Italy
[2] Univ Milan, Dipartimento Chim Fis & Elettrochim, I-20133 Milan, Italy
关键词
D O I
10.1063/1.1455618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy variance optimization algorithm over a fixed ensemble of configurations in variational Monte Carlo often encounters problems of convergence. Being formally identical to a problem of fitting data, we re-examine it from a statistical maximum-likelihood point of view. We show that the assumption of an underlying Gaussian distribution of the local energy, implicit in the standard variance minimization scheme, is not theoretically nor practically justified, and frequently generates convergence problems. We propose alternative procedures for optimization of trial wave functions in quantum Monte Carlo and successfully test them by optimizing a trial wave function for the helium trimer. (C) 2002 American Institute of Physics.
引用
收藏
页码:5345 / 5350
页数:6
相关论文
共 50 条
[41]   Review of quantum Monte Carlo methods and their applications [J].
Acioli, PH .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1997, 394 (2-3) :75-85
[42]   Quantum Monte Carlo Methods for Astrophysical Applications [J].
Tews, Ingo .
FRONTIERS IN PHYSICS, 2020, 8
[43]   Monte Carlo methods for quantum field theory [J].
Kennedy, AD .
CHINESE JOURNAL OF PHYSICS, 2000, 38 (03) :707-720
[44]   OPTIMIZATION OF QUANTUM MONTE-CARLO WAVE-FUNCTIONS USING ANALYTICAL DERIVATIVES [J].
BUECKERT, H ;
ROTHSTEIN, SM ;
VRBIK, J .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1992, 70 (02) :366-371
[45]   On the optimization of approximate integration by Monte Carlo methods [J].
V. F. Babenko .
Ukrainian Mathematical Journal, 1997, 49 (4) :523-528
[46]   Surplus function quantum Monte Carlo approach [J].
Huang, HX ;
Lian, SX ;
Cao, ZX .
ACTA PHYSICO-CHIMICA SINICA, 1999, 15 (07) :599-605
[47]   Monte Carlo methods for discrete stochastic optimization [J].
Homem-De-Mello, T .
STOCHASTIC OPTIMIZATION: ALGORITHMS AND APPLICATIONS, 2001, 54 :97-119
[48]   Trial wave function construction and the nodes of trial and exact wave functions in quantum Monte Carlo. [J].
Bressanini, D .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 :U294-U294
[49]   Quantum diffusion of H/Ni(111) through a Monte Carlo wave function formalism [J].
Badescu, SC ;
Ying, SC ;
Ala-Nissila, T .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5092-5095
[50]   Quantum Monte Carlo simulations using Slater-Jastrow-backflow wave function [J].
Nasiri, Saeed ;
Zahedi, Mansour .
COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2020, 1189