Robust wave function optimization procedures in quantum Monte Carlo methods

被引:64
作者
Bressanini, D
Morosi, G
Mella, M
机构
[1] Univ Insubria Sede Como, Dipartimento Sci Chim Fis & Matemat, I-22100 Como, Italy
[2] Univ Milan, Dipartimento Chim Fis & Elettrochim, I-20133 Milan, Italy
关键词
D O I
10.1063/1.1455618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy variance optimization algorithm over a fixed ensemble of configurations in variational Monte Carlo often encounters problems of convergence. Being formally identical to a problem of fitting data, we re-examine it from a statistical maximum-likelihood point of view. We show that the assumption of an underlying Gaussian distribution of the local energy, implicit in the standard variance minimization scheme, is not theoretically nor practically justified, and frequently generates convergence problems. We propose alternative procedures for optimization of trial wave functions in quantum Monte Carlo and successfully test them by optimizing a trial wave function for the helium trimer. (C) 2002 American Institute of Physics.
引用
收藏
页码:5345 / 5350
页数:6
相关论文
共 50 条
[31]   VARIANCE REDUCTION AND ROBUST PROCEDURES IN MONTE-CARLO ANALYSIS [J].
GENTLE, JE .
OPERATIONS RESEARCH, 1975, 23 :B415-B415
[32]   Quantum Monte Carlo methods and stabilizer states [J].
Jeevanesan, Bhilahari .
PHYSICAL REVIEW A, 2025, 112 (01)
[33]   Monte Carlo methods for dissipative quantum systems [J].
Stockburger, J ;
Theis, C ;
Grabert, H .
MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 :326-333
[34]   Metropolis methods for quantum Monte Carlo simulations [J].
Ceperley, DM .
MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 :85-98
[35]   Quantum Monte Carlo methods for nuclear physics [J].
Carlson, J. ;
Gandolfi, S. ;
Pederiva, F. ;
Pieper, Steven C. ;
Schiavilla, R. ;
Schmidt, K. E. ;
Wiringa, R. B. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (03) :1067-1118
[36]   Quantum Monte Carlo methods in statistical mechanics [J].
Melik-Alaverdian, V ;
Nightingale, MP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1999, 10 (08) :1409-1418
[37]   ANTISYMMETRY IN QUANTUM MONTE-CARLO METHODS [J].
BIANCHI, R ;
BRESSANINI, D ;
CREMASCHI, P ;
MOROSI, G .
COMPUTER PHYSICS COMMUNICATIONS, 1993, 74 (02) :153-163
[38]   Quantum Monte Carlo Methods for Constrained Systems [J].
Wolf, Sarah ;
Curotto, Emanuele ;
Mella, Massimo .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2014, 114 (10) :611-625
[39]   Bilinear diffusion quantum Monte Carlo methods [J].
de Saavedra, FA ;
Kalos, MH .
PHYSICAL REVIEW E, 2003, 67 (02) :10
[40]   BASIS QUANTUM MONTE-CARLO METHODS [J].
OKSUZ, I .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 1984, 9 (03) :239-249