Robust wave function optimization procedures in quantum Monte Carlo methods

被引:63
作者
Bressanini, D
Morosi, G
Mella, M
机构
[1] Univ Insubria Sede Como, Dipartimento Sci Chim Fis & Matemat, I-22100 Como, Italy
[2] Univ Milan, Dipartimento Chim Fis & Elettrochim, I-20133 Milan, Italy
关键词
D O I
10.1063/1.1455618
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The energy variance optimization algorithm over a fixed ensemble of configurations in variational Monte Carlo often encounters problems of convergence. Being formally identical to a problem of fitting data, we re-examine it from a statistical maximum-likelihood point of view. We show that the assumption of an underlying Gaussian distribution of the local energy, implicit in the standard variance minimization scheme, is not theoretically nor practically justified, and frequently generates convergence problems. We propose alternative procedures for optimization of trial wave functions in quantum Monte Carlo and successfully test them by optimizing a trial wave function for the helium trimer. (C) 2002 American Institute of Physics.
引用
收藏
页码:5345 / 5350
页数:6
相关论文
共 50 条
[21]   Optimization of quantum Monte Carlo wave functions using analytical energy derivatives [J].
Lin, X ;
Zhang, HK ;
Rappe, AM .
JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (06) :2650-2654
[22]   Wigner function quantum Monte Carlo [J].
Shifren, L ;
Ferry, DK .
PHYSICA B-CONDENSED MATTER, 2002, 314 (1-4) :72-75
[23]   Optimization of quantum Monte Carlo trial wave functions by energy minimization. [J].
Prendergast, DG .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 :U294-U294
[24]   Recent advances in quantum Monte Carlo for quantum chemistry: Optimization of wave functions and calculation of observables [J].
Toulouse, Julien ;
Umrigar, Cyrus J. ;
Assaraf, Roland .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
[25]   A light weight regularization for wave function parameter gradients in quantum Monte Carlo [J].
Pathak, Shivesh ;
Wagner, Lucas K. .
AIP ADVANCES, 2020, 10 (08)
[26]   Comparing wave function optimization algorithms in real space variational Monte Carlo [J].
Otis, Leon ;
Neuscamman, Eric .
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
[27]   Scaling of non-Markovian Monte Carlo wave-function methods [J].
Piilo, J ;
Maniscalco, S ;
Messina, A ;
Petruccione, F .
PHYSICAL REVIEW E, 2005, 71 (05)
[28]   Multideterminant Wave Functions in Quantum Monte Carlo [J].
Morales, Miguel A. ;
McMinis, Jeremy ;
Clark, Bryan K. ;
Kim, Jeongnim ;
Scuseria, Gustavo E. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (07) :2181-2188
[29]   The Monte Carlo wave-function method: A robust adaptive algorithm and a study in convergence [J].
Kornyik, M. ;
Vukics, A. .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 238 :88-101
[30]   Full Wave Function Optimization with Quantum Monte Carlo-A Study of the Dissociation Energies of ZnO, FeO, FeH, and CrS [J].
Ludovicy, Jil ;
Mood, Kaveh Haghighi ;
Luechow, Arne .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (10) :5221-5229